Introduction: Course Overview,
Java Review

Computer Science E-22/S-22
Harvard Extension School

David G. Sullivan, Ph.D.

Welcome to Computer Science E-22/S-22!

We will study fundamental data structures.

» ways of imposing order on a collection of information
» sequences: lists, stacks, and queues

+ trees

* hash tables

» graphs

We will also:
» study algorithms related to these data structures
* learn how to compare data structures & algorithms

Goals:

* learn to think more intelligently about programming problems
» acquire a set of useful tools and techniques

Sample Problem I: Finding Shortest Paths

» Given a set of routes between pairs of cities, determine the
shortest path from city A to city B.

ga _ PORTLAND 49

CONCORD 74 o3 PORTSMOUTH
Vi&l
ALBANY—2— WORCESTER—%4___ BOSTON
42

49
PROVIDENCE
NEW YORK 185

Sample Problem |I: A Data "Dictionary"

» Given a large collection of data, how can we arrange it
so that we can efficiently:

* add a new item
+ search for an existing item

» Some data structures provide better performance than others
for this application.

* More generally, we’ll learn how to characterize the efficiency
of different data structures and their associated algorithms.

Prerequisites

» A good working knowledge of Java
» comfortable with object-oriented programming concepts
» comfortable with arrays
* some prior exposure to recursion would be helpful

« if your skills are weak or rusty, you may want to consider
first taking CSCI E-10b

» Reasonable comfort level with mathematical reasoning

» mostly simple algebra, but need to understand
the basics of logarithms (we’ll review this)

+ will do some simple proofs

Requirements

» Lectures

» Sections
« optional but highly recommended
+ start this week
» on Zoom; one section will be recorded

» Five problem sets
» plan on 10-20 hours per week!
» code in Java
* must be your own work
« see syllabus for the collaboration policy
» grad-credit students will do extra problems

+ Midterm exam

« Final exam

Additional Administrivia

» Instructor: Dave Sullivan
» TAs: see website mentioned below

» Office hours and contact info. will be available on the Web:
https://cscie22.sites.fas.harvard.edu

» For questions on content, homework, etc.:
» use Ed Discussion on Canvas
» send e-mail to cscie22-staff@lists.fas.harvard.edu

Review: What is an Object?

* An object groups together:

« one or more data values (the object's fields — also known as
instance variables)

+ a set of operations that the object can perform
(the object's methods)

* In Java, we use a class to define a new type of object.
» serves as a "blueprint” for objects of that type
» simple example:

public class Rectangle {
/7 fields
private int width;
private int height;

s/ methods
public int getwidth() {
return this.width;

’

Class vs. Object

The Rectangle class is a blueprint:

public class Rectangle {
// fields
private int width;
private int height;

// methods

Rectangle objects are built according to that blueprint:

width width
height [12 width height
height

(You can also think of the methods as being inside the object,
but we won’t show them in our diagrams.)

Creating and Using an Object

We create an object by using the new operator and
a special method known as a constructor.

Rectangle rl = new Rectangle(10, 30);

Once an object is created, we can call one of its methods
by using dot notation:

int widthl = rl.getwidth();

The object on which the method is invoked is known as
the called object or the current object.

Two Types of Methods

» Methods that belong to an object are referred to as
instance methods or non-static methods.

» they are invoked on an object
int widthl = rl.getwidth(Q;
+ they have access to the fields of the called object

» Static methods do not belong to an object — they belong
to the class as a whole.

» they have the keyword static in their header:
public static int max(int numl, int num2) {

+ they do not have access to the fields of the class
» outside the class, they are invoked using the class name:
int result = Math.max(5, 10);

Encapsulation

» Our classes should provide proper encapsulation.

+ We limit direct access to the internals of an object
by making the fields private:
public class Rectangle {

private int width;
private int height;

» private components of a class can only be accessed
directly by code within the class itself

» We provide limited indirect access through methods
that are labeled public.

public int getwidth() {
return this.width;

3
» publ1ic components can be accessed anywhere

Encapsulation (cont.)

« getwidth() is an accessor method that can be used to
obtain information about an object, but not to change it:
public int getwidth() {
return this.width;

}

+ we use the keyword this to access the fields and methods
that are inside the called object

» A class can also provide mutator methods that change the
called object, but only in appropriate ways:
public void setwidth(int newwidth) {
if (newwidth <= 0) {
throw new I1legalArgumentException();

}
this.width = newwidth;

}

» throwing an exception prevents an inappropriate change
by ending the method prematurely

Inheritance

» We can define a class that explicitly extends another class:

public class Animal {
private String name;
// other field definitions go here

public String getName() {
return this.name;

}

// other method definitions go here

}

public class Dog extends Animal {

* We say that bog is a subclass of Animal, and Animal is a
superclass of Dog.

* A class inherits the fields and methods of the class that it extends.

The Object Class

If a class does not explicitly extend another class, it implicitly
extends Java's Object class.

The object class includes methods that all classes must
possess. For example:

» toString(): returns a string representation of the object
« equals(): is this object equal to another object?

The process of extending classes forms a hierarchy of classes,
with the object class at the top of the hierarchy:

Object

Rectangle ||String| Animal

*
|Ant||Cat| Dogl

Polymorphism

An object can be used wherever an object of one of its
superclasses is called for.

For example:
Animal a = new Dog();

Animal[] zoo = new Animal[100];
zoo[0] = new Ant(Q);
zoo[1] = new Cat(Q);

The name for this capability is polymorphism.
» from the Greek for "many forms"
» the same code can be used with objects of different types

A Bag Data Structure

» Abag is just a container for a group of data items.
» analogy: a bag of candy

» The positions of the data items don’t matter (unlike a sequence).
* {3, 2,10, 6} is equivalent to {2, 3, 6, 10}

» The items do not need to be unique (unlike a set).
« {7,2,10,7, 5} isn’t a set, butitis a bag

A Bag Data Structure (cont.)

» The operations we want our bag to support:
» add(item): add itemto the bag

» remove (item): remove one occurrence of itenm (if any)
from the bag

» contains(item): check if itemis in the bag
« numItems(): getthe number of items in the bag

» grab(): get an item at random, without removing it
« reflects the fact that the items don’t have a position
(and thus we can’t say "get the 5" item in the bag")

« toArray(): get an array containing the current contents
of the bag

Implementing a Bag Using a Class

» To implement our bag data structure, we define a class:

public class ArrayBag {
private Object[] items;
private int numItems;

// constructors go here

public boolean add(Object item) {

}
» Each object of this class will represent an entire bag of items.

* The items themselves are stored in an array of type object.
» allows us to store any type of object in the bag,
thanks to the power of polymorphism:

ArrayBag bag = new ArrayBag();
bag.add("hello");
bag.add(new Rectangle(20, 30));

Memory Management: Looking Under the Hood

* To understand how data structures are implemented,
you need to understand how memory is managed.

* There are three main types of memory allocation in Java.

* They correspond to three different regions of memory.

Memory Management, Type I: Static Storage

Static storage is used for class variables, which are declared
outside any method using the keyword static:

public class MyMethods {
public static int numCompares;
public static final double PI = 3.14159;

There is only one copy of each class variable.
» shared by all objects of the class
» Java's version of a global variable

The Java runtime allocates memory for class variables
when the class is first encountered.

+ this memory stays fixed for the duration of the program

Memory Management, Type |l: Stack Storage

Method parameters and local variables are stored in a region
of memory known as the stack.

For each method call, a new stack frame is added to the top
of the stack.

pubTlic class Foo {
public static int x(int i) {

int =i - 2; JL_6
if (1 >=6) { i 8 x(8)
return i; // return 8
} return addr
return x(i + j); j 3
3 .
public static void i 5 x(5)
main(string[] args) { return addr

System.out.printin(x(5));
} args — 1>

}

When a method completes, its stack frame is removed.

Memory Management, Type lll: Heap Storage

Objects (including arrays) are stored in a region of memory
known as the heap.

Memory on the heap is allocated using the new operator:

int[] values = new int[3];
ArrayBag b = new ArrayBag(Q);

new returns the memory address of the start of the object.

This memory address — which is referred to as a reference —

is stored in the variable that represents the object:
0x23a

values[0x23a] [o T o [o |

We will often use an arrow to represent a reference:

values | ___4___4 o [o] o]

Heap Storage (cont.)

An object remains on the heap until there are no remaining
references to it.

Unused objects are automatically reclaimed by a process
known as garbage collection.

* makes their memory available for other objects

Two Constructors for the ArrayBag Class

public class ArrayBag {
private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;
public ArrayBag(int maxsSize) {
ks

* A class can have multiple constructors.
» the parameters must differ in some way

* The first one is useful for small bags.
» creates an array with room for 50 items.

* The second one allows the client to specify the max # of items.

Two Constructors for the ArrayBag Class

public class ArrayBag {
private oObject[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;

public ArrayBag(int maxSize) {
if (maxSize <= 0) {
throw new I1legalArgumentException(
"maxSize must be > 0");
}
this.items = new Object[maxSize];
this.numItems = 0;

}

» If the user inputs an invalid maxsize, we throw an exception.

Example: Creating Two ArrayBag Objects

// client

public static void main(string[] args) {
ArrayBag bl = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);

// constructor

} public ArrayBag(int maxSize) {
. // error-checking
this.items = new Object[maxSize];
this.numItems = 0;
stack heap } // returns
b2
b1l —1 |
args ;
9 ::ij%‘k‘\‘Q\‘N‘i;aﬁﬁf —t— nul11 | null|
numItems| 0
Example: Creating Two ArrayBag Objects
// client

public static void main(string[] args) {
ArrayBag bl = new ArrayBag(2);
ArrayBag b2

= new ArrayBag(4);

// constructor

} public ArrayBag(int maxSize) {
. // error-checking
this.items = new Object[maxSize];
this.numItems = 0O;
stack heap } // returns
naxsize [T items|| —F—{nul1 [nul1 [null] nult]
—— | numitems[0
b2 ——
bl1] — |
ares L items| ———»|null[null]

numItems| 0

Example: Creating Two ArrayBag Objects

// client

public static void main(string[] args) {
ArrayBag bl new ArrayBag(2);
ArrayBag b2 new ArrayBag(4);

3
» After the objects have been created, here’s what we have:
stack heap
items| ——{null [null|[null]| null]
| numItemg| O
b2 ——
b1] —} |
args .
9 ::““‘EEN““‘iFaiﬁf —t— nul11 | null|
'” numItems| 0

Copying References

» A variable that represents an array or object is known as a
reference variable.

» Assigning the value of one reference variable to another
reference variable copies the reference to the array or object.
It does not copy the array or object itself.

int[] values = {5, 23, 61, 10};
int[] other = values;

other
values| —}—3] 5 [23 [61] 10 |

» Given the lines above, what will the lines below output?

other[2] = 17;
System.out.printin(values[2] + " " + other[2]);

Passing an Object/Array to a Method

» When a method is passed an object or array as a parameter,
the method gets a copy of the reference to the object or array,
not a copy of the object or array itself.

+ Thus, any changes that the method makes to the internals
of the object/array will still be there when the method returns.

« Consider the following:

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);

) System.out.printin(Arrays.toString(a));

public static void triple(int[] n) {

for (int i = 0; i < n.length; i++) {
n[i] = n[i] * 3;
3
3
What is the output?

Passing an Object/Array to a Method (cont.)

before method call

public static void main(string[] args) {
int[] a = {1, 2, 3};
triple(a);

y System.out.printin(...);

during method call

triple triple

main

:

7
l
/-

main
a

o 3

after method call

main

(]

Adding Items to an ArrayBag

We fill the array from left to right. Here's an empty bag:

items[—}—» nul1| null| null| null|
numItems 0

After adding the first item:
items[——»] [null] null|null]

numItems| 1 ‘////

["hello, world"|

After adding the second item:

items[—}—»] [\ [null]null]

numItems 2

[hello, world"] ["howdy" |

Adding Items (cont.)

After adding the third item:

items| ——» | v [~Anull]
numItems 3 E////
["hello, world"| | "howdy" | ["bye"|

After adding the fourth item:

items[—}—» RN
numItems 4

|
["hello, world"] | "howdy" | |"bye"||"see ya!"|

At this point, the ArrayBag is full!
* it's non-trivial to "grow" an array, so we don't!
+ additional items cannot be added until one is removed

A Method for Adding an ltem to a Bag

public class ArrayBag {
private Object[] items;

! - + takes an object of any type!
private int numItems;

* returns a boolean to
indicate if the operation

public boolean add(object item) { gucceeded

if (item == null) {
throw new IllegalArgumentException(''no nulls");

} else if (this.numItems == this.items.length) {
return false; // no more room!
} else {

this.items[this.numItems] = item;
this.numItems++;
return true; // success!

}
* Initially, this.numItems is O, so the first item goes in position O.

* We increase this.numItems because we now have 1 more item.
* and so the next item added will go in the correct position!

Example: Adding an ltem (cont.)

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

b.add(message); o 113¢ boolean add(object item) {
else {
this.items[this.numItems] = item;
this.numItems++;
return true;
stack heap
this items L null [null [null | null]
item | numItems 0
b //ﬁ "hello, world"]
message| —1 |
args >

« add's stack frame includes:

« 1item, which stores a copy of the reference passed as a param.
» this, which stores a reference to the called ArrayBag object

Example: Adding an ltem

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

b.add(message); [97 poolean add(object item) {
else {
this.items[this.numItems] = item;
this.numItems++;
return true;
.
stack heap
this items| —1—— , [null|null| null]
item — numItems| 1

b '/”/’iiijjfEE;;;I"he11o, world" |

message| —
args >

* The method modifies the items array and numItems.
* note that the array holds a copy of the reference to the item,
not a copy of the item itself.

Example: Adding an Iltem

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

?.add(message); public boolean add(Object item) {
else {
this.items[this.numItems] = item;
this.numItems++;
return true;
stack heap
items[—}—»] [null [null | nult]
numItems 1
bl —17 1 »["hello, world"]
message| — |
args >

» After the method call returns, add's stack frame is removed
from the stack.

A Type Mismatch

« Here are the headers of two ArrayBag methods:

public boolean add(Object item)
public oObject grab()

» Polymorphism allows us to pass String objects into add():

ArrayBag stringBag = new ArrayBag();
stringBag.add("hello");
stringBag.add("world");

» However, this will not work:
String str = stringBag.grab(Q); // compiler error
« the return type of grab() is object
+ Object isn’t a subclass of string, so polymorphism doesn't help!

» Instead, we need to use a type cast:
String str = (String)stringBag.grabQ);
« this cast doesn't actually change the value being assigned
« it just reassures the compiler that the assignment is okay

Extra Practice: Determining if a Bag Contains an ltem

items ——’l | \ | | null | null | null | null |
numItems 3 / \ \
["hello, wor1d™] ["oh my!"| ["what's in the bag?"|

» Let’s write the ArrayBag contains() method together.

» should return true if an object equal to itemis found,
and false otherwise.

contains(item) {

Would this work instead?

items| ——s» L\ | nu11 [null [null | nutt .
numItems| 3 / \ \
["heT1To, worTd™] ["oh my!"| ["what's in the bag?"|

+ Let's write the ArrayBag contains() method together.

* should return true if an object equal to itemis found,
and false otherwise.

public boolean contains(Object item) {
for (int i = 0; i < this.items.length; i++) {
if (this.items[i].equals(item)) { // not ==
return true;
}

}

return false;

Another Incorrect contains () Method

public boolean contains(Object item) {
for (int i = 0; i < this.numItems; i++) {
if (this.items[i].equals(item)) {
return true;
} else {
return false;
}
3
return false;

}
* What's the problem with this?

