Binary Trees and Huffman Encoding

Computer Science E-22

Harvard University

David G. Sullivan, Ph.D.

Motivation: Implementing a Dictionary

» A data dictionary is a collection of data with two main operations:

» search for an item (and possibly delete it)
* insert a new item

+ If we use a sorted list to implement it, efficiency = O(n).

data structure

searching for an item

inserting an item

a list implemented using
an array

O(log n)
using binary search

O(n)
because we need to shift
items over

a list implemented using
a linked list

O(n)
using linear search

(binary search in a linked
listis O(nlogn))

O(n)

(O(1) to do the actual
insertion, but O(n) to find
where it belongs)

* In the next few lectures, we’ll look at how we can use a tree
for a data dictionary, and we'll try to get better efficiency.

« We’'ll also look at other applications of trees.

What Is a Tree?

root

node

\

edge

» A tree consists of:
* aset of nodes
* a set of edges, each of which connects a pair of nodes

» Each node may have one or more data items.
» each data item consists of one or more fields
* key field = the field used when searching for a data item
+ data items with the same key are referred to as duplicates

» The node at the "top" of the tree is called the roof of the tree.

Relationships Between Nodes

» Ifanode N is connected to nodes directly below it in the tree:
* N is referred to as their parent
 they are referred to as its children.
« example: node 5 is the parent of nodes 10, 11, and 12

« Each node is the child of at most one parent.

* Nodes with the same parent are siblings.

Relationships Between Nodes (cont.)

* A node’s ancestors are its parent, its parent’s parent, etc.
» example: node 9’s ancestors are 3 and 1

* A node’s descendants are its children, their children, etc.
+ example: node 1’s descendants are all of the other nodes

Types of Nodes

* A Jeaf node is a node without children.

* An interior node is a node with one or more children.

A Tree is a Recursive Data Structure

« Each node in the tree is the root of a smaller tree!

* refer to such trees as subtrees to distinguish them from
the tree as a whole

» example: node 2 is the root of the subtree circled above
+ example: node 6 is the root of a subtree with only one node

+ We'll see that tree algorithms often lend themselves to
recursive implementations.

Path, Depth, Level, and Height

<+— Jevel 0

<+— |evel 1

depth=2 ——» <+— |evel 2

» There is exactly one path (one sequence of edges) connecting
each node to the root.

» depth of a node = # of edges on the path from it to the root
* Nodes with the same depth form a level of the tree.

» The height of a tree is the maximum depth of its nodes.
+ example: the tree above has a height of 2

Binary Trees

* In a binary tree, nodes have at most two children.
+ distinguish between them using the direction left or right

* Recursive definition: a binary tree is either:
1) empty, or
2) a node (the root of the tree) that has:
* one or more pieces of data (the key, and possibly others)
* a left subtree, which is itself a binary tree
* a right subtree, which is itself a binary tree

Which of the following is/are not true?

(26
(1) (32)
OROME
@D

This tree has a height of 4.

There are 3 leaf nodes.

The 38 node is the right child of the 32 node.

The 12 node has 3 children.

more than one of the above are not true (which ones?)

moow>

Representing a Binary Tree Using Linked Nodes

pubTlic class LinkedTree {
private class Node {
private int key;
private LLList data;
private Node Teft;
private Node right;

// 1imit ourselves to int keys
// Tist of data for that key
// reference to left child

// reference to right child
1

private Node root;

Representing a Binary Tree Using Linked Nodes
pubTlic class LinkedTree {

private class Node { key (not showing
private int key; Teft |right] data field)
private LLList data; - A
private Node left; /
private Node right; ref. to left child ref. to right child
} (nu11 if none) (nu11 if none)
private Node root; 26
} |
root ‘/ \‘
@ 12 32
LinkedTree
object / | \ mml \\

4 18 38

o @ @ nu'I'I| \ nu'I'I|nu'I'I nu'I'I|nu'I'I
@ :

null |nu'|'|

Traversing a Binary Tree

+ Traversing a tree involves visiting all of the nodes in the tree.
+ visiting a node = processing its data in some way
+ example: print the key

+ We'll look at four types of traversals.
« each visits the nodes in a different order

» To understand traversals, it helps to remember that every node
is the root of a subtree.

&—— 32 s the root of
\\ 26’s right subtree

12 is the root of _/,;
26’s left subtree |/

4 is the root of
12’s left subtree

1: Preorder Traversal

» preorder traversal of the tree whose root is N:
1) visit the root, N
2) recursively perform a preorder traversal of N’s left subtree
3) recursively perform a preorder traversal of N’s right subtree

» preorder because a node is visited before its subtrees

» The root of the tree as a whole is visited first.

Implementing Preorder Traversal

public class LinkedTree {
private Node root;

public void preorderPrint() {
if (root != null) {
preorderPrintTree(root);
}

System.out.printin(Q;
}
private static void preorderPrintTree(Node root) {
System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left); Not always the
same as the root
if (root.right != null) { of the entire tree.

preorderPrintTree(root.right);
}
}

« preorderPrintTree() is a static, recursive method that takes
the root of the tree/subtree that you want to print.

« preorderPrint() is a non-static "wrapper" method that makes
the initial call. It passes in the root of the entire tree.

Tracing Preorder Traversal

void preorderPrintTree(Node root) { o
System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left); e e
}

if (root.right != null) {
preorderPrintTree(root.right); G e 0
}

base case, since o

neither recursive

call is made! order in which nodes are visited:
we go back

root: @ up the tree
print 4 by returning!

root: root: root: root: @
print 8 print 6
root: @ root: @ root: @ root: @ root: @ root: @

root: @ root: @ root: (7) root: (7) root: (7) root: (7) root: (7)

print 7

time

Using Recursion for Traversals

void preorderPrintTree(Node root) {
System.out.print(root.key + " "); 0
if (root.left != null) {

preorderPrintTree(root.left); e e
}
if (root.right != null) {
preorderPrintTree(root.right); e e 6
}
J - (4)
base case, since
neither recursive)) o
call is made! order in which nodes are visited:
we go back

root: @ up the tree
print 4 by returning!

root: root: root: root: @

print 8 print 6

» Using recursion allows us to easily go back up the tree.

E * Using a loop would be harder. Why?

2: Postorder Traversal

» postorder traversal of the tree whose root is N:
1) recursively perform a postorder traversal of N’s left subtree

2) recursively perform a postorder traversal of N’s right subtree
3) visit the root, N

» postorder because a node is visited after its subtrees

» The root of the tree as a whole is visited last.

Implementing Postorder Traversal

public class LinkedTree {
private Node root;

public void postorderPrint() {
if (root != null) {
postorderPrintTree(root);
3

System.out.printin(Q);
}

private static void postorderPrintTree(Node root) {
if (root.left != null) {
postorderPrintTree(root.left);
}

if (root.right != null) {
postorderPrintTree(root.right);
}

System.out.print(root.key + " ");
}

* Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal

void postorderPrintTree(Node root) { 0
if (root.left != null) {
postorderPrintTree(root.left);

} o) (5)

if (root.right != null) {

postorderPrintTree(root.right);
) @ (& (2

System.out.print(root.key + " ");
| “

order in which nodes are visited:

root: @

print 4

root: root: root: root: @

print 8 print 6

root: @ root: @ root: @ root: @ root: @ root: @

root: @ root: @ root: (7) root: (7) root: (7) root: (7) root: (7)

time

3: Inorder Traversal

+ inorder traversal of the tree whose root is N:
1) recursively perform an inorder traversal of N’s left subtree
2) visit the root, N
3) recursively perform an inorder traversal of N’s right subtree

* The root of the tree as a whole is visited between its subtrees.

+ We'll see later why this is called inorder traversal!

Implementing Inorder Traversal

public class LinkedTree {
private Node root;

pubTlic void inorderPrint() {
if (root != null) {
inorderPrintTree(root);
}

System.out.printin(Q);
}

private static void inorderPrintTree(Node root) {
if (root.left != null) {
inorderPrintTree(root.left);
}

System.out.print(root.key + " ");

if (root.right !'= null) {
inorderPrintTree(root.right);
}

* Note that the root is printed between the two recursive calls.

Tracing Inorder Traversal

void inorderPrintTree(Node root) { a
if (root.left != null) {
inorderPrintTree(root.left);

} (o) (5)

System.out.print(root.key + " ");
if (root.right !'= null) {

inorderPrintTree(root.right); e e 6
3

: O,

order in which nodes are visited:

root: @
print 4
root: root: root: root: @
print 8 print 6
root: @ root: @ root: @ root: @ root: @ root: @
print 9
root: (7) root: (7) root: @ root: @ root:@ root: @ root: @
time

Level-Order Traversal

» Visit the nodes one level at a time, from top to bottom
and left to right.

» Level-order traversal of the tree above: 7 9 5 8 6 2 4

+ We can implement this type of traversal using a queue.

Tree-Traversal Summary

preorder: root, left subtree, right subtree
postorder: left subtree, right subtree, root
inorder: left subtree, root, right subtree
level-order: top to bottom, left to right

» Perform each type of traversal on the tree below:

(®
(15) Q
ONOBNONO
12 (&) ONCD
(2

Tree Traversal Puzzle
» preorder traversal: AMPKLDHT
« inorder traversal: PMLKAHTD

* Draw the tree!

+ What's one fact that we can easily determine from one
of the traversals?

Using a Binary Tree for an Algebraic Expression

We'll restrict ourselves to fully parenthesized expressions
using the following binary operators: +, —, *, /

Example: ((a + (3 * ©)) - (d / 2))

Leaf nodes are variables or constants.

Interior nodes are operators.
+ their children are their operands

Traversing an Algebraic-Expression Tree

Inorder gives conventional ’

algebraic notation.
* print ‘(" before the recursive o o

call on the left subtree e ° 0 e

 print)’ after the recursive
call on the right subtree Q e

» fortree atright: ((a + (b * ¢)) - (d / e))

Preorder gives functional notation.
» print ‘("s and ‘)’s as for inorder, and commas after the
recursive call on the left subtree

» for tree above: subtr(add(a, mult(b, c)), divide(d, e))

Postorder gives the order in which the computation must be
carried out on a stack/RPN calculator.

« for tree above: push a, push b, push c, multiply, add,..

Fixed-Length Character Encodings

A character encoding maps each character to a number.

Computers usually use fixed-length character encodings.

» ASCII - 8 bits per character

char | dec binary
'a' | 97 01100001
'b' | 98 01100010
't' | 116 01110100

example: "bat" is stored in a text
file as the following sequence of bits:

01100010 01100001 01110100

» Unicode - 16 bits per character
(allows for foreign-language characters; ASCIl is a subset)

Fixed-length encodings are simple, because:
+ all encodings have the same length
* a given character always has the same encoding

A Problem with Fixed-Length Encodings

They tend to waste space.

Example: an English newspaper article with only:
 upper and lower-case letters (52 characters)
» spaces and newlines (2 characters)
« common punctuation (approx. 10 characters)
« total of 64 unique characters = only need ___ bits

We could gain even more space if we:
» gave the most common letters shorter encodings (3 or 4 bits)
» gave less frequent letters longer encodings (> 6 bits)

Variable-Length Character Encodings

» Variable-length encodings compress a text file by:
* using encodings of different lengths for different characters

 assigning shorter encodings to frequently occurring characters

+ Example: if we had only four characters

e |01
o |[100
s 111
t |00

"test" would be encoded as
00 01 111 00 -> 000111100

» Challenge: when reading a document, how do we determine
the boundaries between characters?

* how do we know how many bits the next character has?

* One requirement: no character's encoding can be the prefix of
another character's encoding (e.g., couldn't have 00 and 001).

Huffman Encoding

+ One type of variable-length encoding

« Based on the actual character frequencies in a given document
« different documents have different encodings

» Huffman encoding uses a binary tree:
» to determine the encoding of each character
» to decode / decompress an encoded file
* putting it back into ASCII

Huffman Trees

+ Example for a text with
only six characters:

» Leaf nodes are characters.

to its leaf node.
* example:i=?

Left branches are labeled with a 0, right branches with a 1.

To get a character's encoding, follow the path from the root

Building a Huffman Tree

1) Begin by reading through the text to determine the frequencies.

2) Create a list of nodes containing (character, frequency) pairs
for each character in the text — sorted by frequency.

'o' g 'a s 't 'e'
11 23 25 26 27 40
L | L L
3) Remove and "merge" the nodes with N
the two lowest frequencies, forming a 34
new node that is their parent.
* left child = lowest frequency node |
* right child = the other node o‘(\‘1
 frequency of parent = sum of the 11 23
frequencies of its children —

e in this case, 11 + 23 =34

Z

means
null

Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes (maintaining sorted order):

'a' 'S' 't' — e
25 26 27 34 40
| BN L
¥ N
|O| |_i|
11 23
L]

5) Repeat steps 3 and 4 until there is only a single node in the list,
which will be the root of the Huffman tree.

Completing the Huffman Tree Example |

Merge the two remaining nodes with the lowest frequencies:

'a' ISI 't' - 'e'
25 26 27 34 40
i | [\ L
¥ N
'0' '.i'
11 23
L L
't' _ 'eI —_
27 34 40 51
[\ L N
¥ N ¥ N
lol l_i' 'a| 's'
11 23 25 26

Completing the Huffman Tree Example Il
Merge the next two nodes:

o N n
27 34 40 51
\ |] |
4 e Ny
o e Py pr
11 23 25 26
7
Y . .
40 51 61
1 | [
¥ b K N
e per o .
25 26 27 34
|
o o
11 23
7

Completing the Huffman Tree Example Il

Merge again:
o -
40 51
171
K
25 26

91

Completing the Huffman Tree Example IV

+ The next merge creates the final tree:

152

// | \\
61 91
| |
¥ N ¥ MY
P _
27 34 40 51
| I
¥ N ¥ N
i ‘q’
11 23 25 26
L] L]

Characters that appear more frequently end up higher in the tree,
and thus their encodings are shorter.

The Shape of the Huffman Tree

» The tree on the last slide is fairly symmetric.

» This won't always be the case!
» depends on the character frequencies

» For example, changing the frequency of 'o' from 11 to 21
would produce the tree shown below:

This is the tree that we'll use in the remaining slides.

Huffman Encoding: Compressing a File
1) Read through the input file and build its Huffman tree.

2) Write a file header for the output file.
* include the character frequencies so the tree can be rebuilt

when the file is decompressed

3) Traverse the Huffman tree to create a table containing the
encoding of each character:

—~ |»n | O

4) Read through the input file a second time, and write the
Huffman code for each character to the output file.

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,
return to the root, and continue reading bits
The tree allows us to easily overcome the challenge of
determining the character boundaries!
example: 101111110000111100
first character = i

What are the next three characters?

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child

when you read a bit of 0, go to the left child

when you reach a leaf node, record the character,
return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 111110000111100
first character = i (101)

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,
return to the root, and continue reading bits
The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 00
101 = right,left,right

111 = right,right,right
110 = right,right,left
00 = left,left

01 = left,right

L | 1 A I | I [|
~0n oo o0 »n

111 = right,right,right
00 = left,left

