
Binary Trees and Huffman Encoding

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Motivation: Implementing a Dictionary

• A data dictionary is a collection of data with two main operations:
• search for an item (and possibly delete it)
• insert a new item

• If we use a sorted list to implement it, efficiency = O(n).

• In the next few lectures, we’ll look at how we can use a tree
for a data dictionary, and we'll try to get better efficiency.

• We’ll also look at other applications of trees.

inserting an itemsearching for an itemdata structure

O(n)
because we need to shift
items over

O(log n)
using binary search

a list implemented using
an array

O(n)

(O(1) to do the actual
insertion, but O(n) to find
where it belongs)

O(n)
using linear search

(binary search in a linked
list is O(n log n))

a list implemented using
a linked list

What Is a Tree?

• A tree consists of:
• a set of nodes
• a set of edges, each of which connects a pair of nodes

• Each node may have one or more data items.
• each data item consists of one or more fields
• key field = the field used when searching for a data item
• data items with the same key are referred to as duplicates

• The node at the "top" of the tree is called the root of the tree.

root

node

edge

• If a node N is connected to nodes directly below it in the tree:

• N is referred to as their parent

• they are referred to as its children.

• example: node 5 is the parent of nodes 10, 11, and 12

• Each node is the child of at most one parent.

• Nodes with the same parent are siblings.

Relationships Between Nodes
1

2 3 4 6

7 8 9

5

10 11 12

• A node’s ancestors are its parent, its parent’s parent, etc.

• example: node 9’s ancestors are 3 and 1

• A node’s descendants are its children, their children, etc.

• example: node 1’s descendants are all of the other nodes

Relationships Between Nodes (cont.)

1

2 3 4 5 6

7 8 9 10 11 12

Types of Nodes

• A leaf node is a node without children.

• An interior node is a node with one or more children.

1

2 3 4 5 6

7 8 9 10 11 12

13

A Tree is a Recursive Data Structure

• Each node in the tree is the root of a smaller tree!
• refer to such trees as subtrees to distinguish them from

the tree as a whole
• example: node 2 is the root of the subtree circled above
• example: node 6 is the root of a subtree with only one node

• We’ll see that tree algorithms often lend themselves to
recursive implementations.

1

2 3 4 5 6

7 8 9 10 11 12

13

Path, Depth, Level, and Height

• There is exactly one path (one sequence of edges) connecting
each node to the root.

• depth of a node = # of edges on the path from it to the root

• Nodes with the same depth form a level of the tree.

• The height of a tree is the maximum depth of its nodes.
• example: the tree above has a height of 2

depth = 2

level 1

level 0

level 2

Binary Trees

• In a binary tree, nodes have at most two children.

• distinguish between them using the direction left or right

• Example:

• Recursive definition: a binary tree is either:
1) empty, or
2) a node (the root of the tree) that has:

• one or more pieces of data (the key, and possibly others)
• a left subtree, which is itself a binary tree
• a right subtree, which is itself a binary tree

26’s right child26’s left child

26’s left subtree 26’s right subtree

26

12 32

4 18 38

7 4’s right child

Which of the following is/are not true?

A. This tree has a height of 4.

B. There are 3 leaf nodes.

C. The 38 node is the right child of the 32 node.

D. The 12 node has 3 children.

E. more than one of the above are not true (which ones?)

26

12 32

4

7

18 38

Representing a Binary Tree Using Linked Nodes
public class LinkedTree {

private class Node {
private int key; // limit ourselves to int keys
private LLList data; // list of data for that key
private Node left; // reference to left child
private Node right; // reference to right child
…

}

private Node root;
…

}

Representing a Binary Tree Using Linked Nodes
public class LinkedTree {

private class Node {
private int key;
private LLList data;
private Node left;
private Node right;
…

}

private Node root;
…

}

26

12 32

4 18 38

7

32

null

26

12

38

nullnull

18

nullnull

4

null

7

nullnull

ref. to left child
(null if none)

key

rightleft

(not showing
data field)

ref. to right child
(null if none)

root

LinkedTree

object

Traversing a Binary Tree

• Traversing a tree involves visiting all of the nodes in the tree.

• visiting a node = processing its data in some way

• example: print the key

• We'll look at four types of traversals.

• each visits the nodes in a different order

• To understand traversals, it helps to remember that every node
is the root of a subtree.

32 is the root of
26’s right subtree

12 is the root of
26’s left subtree

26

12 32

4 18 38

7

4 is the root of
12’s left subtree

1: Preorder Traversal

• preorder traversal of the tree whose root is N:
1) visit the root, N
2) recursively perform a preorder traversal of N’s left subtree
3) recursively perform a preorder traversal of N’s right subtree

• preorder because a node is visited before its subtrees

• The root of the tree as a whole is visited first.

7

9

8 6

4

5

2

Implementing Preorder Traversal
public class LinkedTree {

...
private Node root;

public void preorderPrint() {
if (root != null) {

preorderPrintTree(root);
}
System.out.println();

}
private static void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

• preorderPrintTree() is a static, recursive method that takes
the root of the tree/subtree that you want to print.

• preorderPrint() is a non-static "wrapper" method that makes
the initial call. It passes in the root of the entire tree.

Not always the
same as the root
of the entire tree.

Tracing Preorder Traversal
void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

root:
print 8

root:

root:

time

root:
print 9

root: root:
print 7

root:
print 4

root:

root:

root:

root:

root:

root:

root:

root:

root:
print 6

root:

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7

9

8 6

4

5

2

base case, since
neither recursive
call is made! we go back

up the tree
by returning!

order in which nodes are visited:

Using Recursion for Traversals
void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

root:
print 8

root:

root:

time

root:
print 9

root: root:
print 7

root:
print 4

root:

root:

root:

root:

root:

root:

root:

root:

root:
print 6

root:

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7

9

8 6

4

5

2

base case, since
neither recursive
call is made! we go back

up the tree
by returning!

• Using recursion allows us to easily go back up the tree.

• Using a loop would be harder. Why?

order in which nodes are visited:

2: Postorder Traversal

• postorder traversal of the tree whose root is N:
1) recursively perform a postorder traversal of N’s left subtree
2) recursively perform a postorder traversal of N’s right subtree
3) visit the root, N

• postorder because a node is visited after its subtrees

• The root of the tree as a whole is visited last.

7

9

8 6

4

5

2

Implementing Postorder Traversal
public class LinkedTree {

…
private Node root;

public void postorderPrint() {
if (root != null) {

postorderPrintTree(root);
}
System.out.println();

}

private static void postorderPrintTree(Node root) {
if (root.left != null) {

postorderPrintTree(root.left);
}
if (root.right != null) {

postorderPrintTree(root.right);
}
System.out.print(root.key + " ");

}

• Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal
void postorderPrintTree(Node root) {

if (root.left != null) {
postorderPrintTree(root.left);

}
if (root.right != null) {

postorderPrintTree(root.right);
}
System.out.print(root.key + " ");

}

root:

root:

root:

time

root:

root: root:

root:
print 4

root:

root:

root:

root:
print 8

root:

root:

root:

root:

root:
print 6

root:

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7

9

8 6

4

5

2

order in which nodes are visited:

3: Inorder Traversal

• inorder traversal of the tree whose root is N:
1) recursively perform an inorder traversal of N’s left subtree
2) visit the root, N
3) recursively perform an inorder traversal of N’s right subtree

• The root of the tree as a whole is visited between its subtrees.

• We'll see later why this is called inorder traversal!

7

9

8 6

4

5

2

Implementing Inorder Traversal
public class LinkedTree {

…
private Node root;

public void inorderPrint() {
if (root != null) {

inorderPrintTree(root);
}
System.out.println();

}

private static void inorderPrintTree(Node root) {
if (root.left != null) {

inorderPrintTree(root.left);
}
System.out.print(root.key + " ");
if (root.right != null) {

inorderPrintTree(root.right);
}

}
}

• Note that the root is printed between the two recursive calls.

Tracing Inorder Traversal
void inorderPrintTree(Node root) {

if (root.left != null) {
inorderPrintTree(root.left);

}
System.out.print(root.key + " ");
if (root.right != null) {

inorderPrintTree(root.right);
}

}

root:
print 8

root:

root:

time

root:

root: root:

root:
print 4

root:

root:

root:

root:

root:

root:

root:
print 9

root:

root:
print 6

root:

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7

9

8 6

4

5

2

order in which nodes are visited:

Level-Order Traversal

• Visit the nodes one level at a time, from top to bottom
and left to right.

• Level-order traversal of the tree above: 7 9 5 8 6 2 4

• We can implement this type of traversal using a queue.

7

9

8 6

4

5

2

preorder: root, left subtree, right subtree

postorder: left subtree, right subtree, root

inorder: left subtree, root, right subtree

level-order: top to bottom, left to right

• Perform each type of traversal on the tree below:

Tree-Traversal Summary

9

15

23 8

6

7

10

12

2

5

35 26

• preorder traversal: A M P K L D H T

• inorder traversal: P M L K A H T D

• Draw the tree!

• What's one fact that we can easily determine from one
of the traversals?

Tree Traversal Puzzle

Using a Binary Tree for an Algebraic Expression

• We’ll restrict ourselves to fully parenthesized expressions
using the following binary operators: +, –, *, /

• Example: ((a + (3 * c)) - (d / 2))

• Leaf nodes are variables or constants.

• Interior nodes are operators.

• their children are their operands

-

+ /

a * 2

3 c

d

Traversing an Algebraic-Expression Tree

• Inorder gives conventional
algebraic notation.
• print ‘(’ before the recursive

call on the left subtree

• print ‘)’ after the recursive
call on the right subtree

• for tree at right: ((a + (b * c)) - (d / e))

• Preorder gives functional notation.

• print ‘(’s and ‘)’s as for inorder, and commas after the
recursive call on the left subtree

• for tree above: subtr(add(a, mult(b, c)), divide(d, e))

• Postorder gives the order in which the computation must be
carried out on a stack/RPN calculator.

• for tree above: push a, push b, push c, multiply, add,…

–

+

a *

b c

/

ed

Fixed-Length Character Encodings

• A character encoding maps each character to a number.

• Computers usually use fixed-length character encodings.

• ASCII - 8 bits per character

example: "bat" is stored in a text
file as the following sequence of bits:

01100010 01100001 01110100

• Unicode - 16 bits per character
(allows for foreign-language characters; ASCII is a subset)

• Fixed-length encodings are simple, because:

• all encodings have the same length

• a given character always has the same encoding

binarydecchar

0110000197'a'

0110001098'b'

………

01110100116't'

A Problem with Fixed-Length Encodings

• They tend to waste space.

• Example: an English newspaper article with only:

• upper and lower-case letters (52 characters)

• spaces and newlines (2 characters)

• common punctuation (approx. 10 characters)

• total of 64 unique characters only need ___ bits

• We could gain even more space if we:

• gave the most common letters shorter encodings (3 or 4 bits)

• gave less frequent letters longer encodings (> 6 bits)

Variable-Length Character Encodings

• Variable-length encodings compress a text file by:

• using encodings of different lengths for different characters

• assigning shorter encodings to frequently occurring characters

• Example: if we had only four characters

"test" would be encoded as
00 01 111 00  000111100

• Challenge: when reading a document, how do we determine
the boundaries between characters?

• how do we know how many bits the next character has?

• One requirement: no character's encoding can be the prefix of
another character's encoding (e.g., couldn't have 00 and 001).

01e

100o

111s

00t

Huffman Encoding

• One type of variable-length encoding

• Based on the actual character frequencies in a given document

• different documents have different encodings

• Huffman encoding uses a binary tree:

• to determine the encoding of each character

• to decode / decompress an encoded file
• putting it back into ASCII

Huffman Trees

• Example for a text with
only six characters:

• Left branches are labeled with a 0, right branches with a 1.

• Leaf nodes are characters.

• To get a character's encoding, follow the path from the root
to its leaf node.

• example: i = ?

t e

io a s

0 1

0

0 0

1

1

1

1

0

Building a Huffman Tree

1) Begin by reading through the text to determine the frequencies.

2) Create a list of nodes containing (character, frequency) pairs
for each character in the text – sorted by frequency.

3) Remove and "merge" the nodes with
the two lowest frequencies, forming a
new node that is their parent.

• left child = lowest frequency node

• right child = the other node

• frequency of parent = sum of the
frequencies of its children
• in this case, 11 + 23 = 34

'o'

11

'i'

23

'a'

25

's'

26

't'

27

'e'

40

'o'

11

'i'

23

-

34

means
null

Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes (maintaining sorted order):

5) Repeat steps 3 and 4 until there is only a single node in the list,
which will be the root of the Huffman tree.

'a'

25

's'

26

't'

27

'e'

40

'o'

11

'i'

23

-

34

Completing the Huffman Tree Example I

• Merge the two remaining nodes with the lowest frequencies:
'a'

25

's'

26

't'

27

-

34

'o'

11

'i'

23

'e'

40

't'

27

'a'

25

's'

26

-

51

-

34

'o'

11

'i'

23

'e'

40

Completing the Huffman Tree Example II

• Merge the next two nodes:

Completing the Huffman Tree Example II

• Merge again:

Completing the Huffman Tree Example IV

• The next merge creates the final tree:

• Characters that appear more frequently end up higher in the tree,
and thus their encodings are shorter.

t

io

0 1

0

0

1

1
e

sa

0

0

1

1

The Shape of the Huffman Tree

• The tree on the last slide is fairly symmetric.

• This won't always be the case!

• depends on the character frequencies

• For example, changing the frequency of 'o' from 11 to 21
would produce the tree shown below:

• This is the tree that we'll use in the remaining slides.

t e

io a s

0 1

0

0 0

1

1

1

1

0

Huffman Encoding: Compressing a File

1) Read through the input file and build its Huffman tree.

2) Write a file header for the output file.

• include the character frequencies so the tree can be rebuilt
when the file is decompressed

3) Traverse the Huffman tree to create a table containing the
encoding of each character:

4) Read through the input file a second time, and write the
Huffman code for each character to the output file.

a

e

i

o

s

t

t e

io a s

0 1

0

0 0

1

1

1

1

0

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 101111110000111100
first character = i

t e

o a s

0 1

0

0 0

1

1

1

1

0

i

What are the next three characters?

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 101111110000111100
first character = i (101)

t e

io a s

0 1

0

0 0

1

1

1

1

0

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 101111110000111100
101 = right,left,right = i
111 = right,right,right= s
110 = right,right,left = a

00 = left,left = t
01 = left,right = e

111 = right,right,right= s
00 = left,left = t

t e

io a s

0 1

0

0 0

1

1

1

1

0

