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Introduction: Course Overview,
Java Review

Computer Science E-22/S-22
Harvard Extension School

David G. Sullivan, Ph.D.

Welcome to Computer Science E-22/S-22!

• We will study fundamental data structures.

• ways of imposing order on a collection of information
• sequences: lists, stacks, and queues
• trees
• hash tables
• graphs

• We will also:

• study algorithms related to these data structures

• learn how to compare data structures & algorithms

• Goals:

• learn to think more intelligently about programming problems
• acquire a set of useful tools and techniques
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Sample Problem I: Finding Shortest Paths

• Given a set of routes between pairs of cities, determine the 
shortest path from city A to city B.
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54

49
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42
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Sample Problem II: A Data "Dictionary"

• Given a large collection of data, how can we arrange it 
so that we can efficiently:

• add a new item

• search for an existing item

• Some data structures provide better performance than others 
for this application.

• More generally, we’ll learn how to characterize the efficiency
of different data structures and their associated algorithms.
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Prerequisites

• A good working knowledge of Java

• comfortable with object-oriented programming concepts

• comfortable with arrays

• some prior exposure to recursion would be helpful

• if your skills are weak or rusty, you may want to consider 
first taking CSCI E-10b

• Reasonable comfort level with mathematical reasoning

• mostly simple algebra, but need to understand 
the basics of logarithms (we’ll review this)

• will do some simple proofs

Requirements

• Lectures 

• Sections

• optional but highly recommended

• start this week

• on Zoom; one section will be recorded

• Five problem sets
• plan on 10-20 hours per week!
• code in Java
• must be your own work

• see syllabus for the collaboration policy

• grad-credit students will do extra problems

• Midterm exam

• Final exam
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Additional Administrivia

• Instructor: Dave Sullivan

• TAs: see website mentioned below

• Office hours and contact info. will be available on the Web: 

https://cscie22.sites.fas.harvard.edu

• For questions on content, homework, etc.:

• use Ed Discussion on Canvas

• send e-mail to cscie22-staff@lists.fas.harvard.edu

Review: What is an Object?

• An object groups together:

• one or more data values (the object's fields – also known as
instance variables)

• a set of operations that the object can perform
(the object's methods)

• In Java, we use a class to define a new type of object.

• serves as a "blueprint" for objects of that type

• simple example:

public class Rectangle {
// fields
private int width;
private int height;

// methods
public int getWidth() {

return this.width;
}
…   
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Class vs. Object

• The Rectangle class is a blueprint:

• Rectangle objects are built according to that blueprint:

(You can also think of the methods as being inside the object,
but we won’t show them in our diagrams.)

public class Rectangle {
// fields
private int width;
private int height;

// methods
...

}

12height

10width

72height

55width 13height

40width

Creating and Using an Object

• We create an object by using the new operator and 
a special method known as a constructor:

Rectangle r1 = new Rectangle(10, 30);

• Once an object is created, we can call one of its methods
by using dot notation:

int width1 = r1.getWidth();

• The object on which the method is invoked is known as
the called object or the current object.
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Two Types of Methods

• Methods that belong to an object are referred to as 
instance methods or non-static methods.

• they are invoked on an object

int width1 = r1.getWidth();

• they have access to the fields of the called object

• Static methods do not belong to an object – they belong 
to the class as a whole.

• they have the keyword static in their header:

public static int max(int num1, int num2) {

...

• they do not have access to the fields of the class

• outside the class, they are invoked using the class name:

int result = Math.max(5, 10);

Encapsulation

• Our classes should provide proper encapsulation.

• We limit direct access to the internals of an object 
by making the fields private:

public class Rectangle {
private int width;
private int height;
...

• private components of a class can only be accessed 
directly by code within the class itself

• We provide limited indirect access through methods
that are labeled public.

public int getWidth() {
return this.width;

}

• public components can be accessed anywhere
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Encapsulation (cont.)

• getWidth() is an accessor method that can be used to 
obtain information about an object, but not to change it:

public int getWidth() {
return this.width;

}

• we use the keyword this to access the fields and methods 
that are inside the called object

• A class can also provide mutator methods that change the 
called object, but only in appropriate ways:

public void setWidth(int newWidth) {
if (newWidth <= 0) {

throw new IllegalArgumentException();
}
this.width = newWidth;

}

• throwing an exception prevents an inappropriate change 
by ending the method prematurely

Inheritance

• We can define a class that explicitly extends another class:

public class Animal {
private String name;
// other field definitions go here

public String getName() {
return this.name;

}
// other method definitions go here

}

public class Dog extends Animal {
...

• We say that Dog is a subclass of Animal, and Animal is a 
superclass of Dog.

• A class inherits the fields and methods of the class that it extends.
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The Object Class

• If a class does not explicitly extend another class, it implicitly 
extends Java’s Object class.

• The Object class includes methods that all classes must 
possess.  For example:

• toString(): returns a string representation of the object

• equals(): is this object equal to another object?

• The process of extending classes forms a hierarchy of classes, 
with the Object class at the top of the hierarchy:

Object

Animal

DogCatAnt

StringRectangle

Polymorphism

• An object can be used wherever an object of one of its 
superclasses is called for. 

• For example:

Animal a = new Dog();

Animal[] zoo = new Animal[100];
zoo[0] = new Ant();
zoo[1] = new Cat();
...

• The name for this capability is polymorphism.

• from the Greek for "many forms"

• the same code can be used with objects of different types
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A Bag Data Structure

• A bag is just a container for a group of data items.

• analogy: a bag of candy

• The positions of the data items don’t matter (unlike a sequence).

• {3, 2, 10, 6}  is equivalent to {2, 3, 6, 10}

• The items do not need to be unique (unlike a set).

• {7, 2, 10, 7, 5}  isn’t a set, but it is a bag

A Bag Data Structure (cont.)

• The operations we want our bag to support:

• add(item): add item to the bag

• remove(item): remove one occurrence of item (if any) 
from the bag

• contains(item): check if item is in the bag

• numItems(): get the number of items in the bag

• grab(): get an item at random, without removing it

• reflects the fact that the items don’t have a position 
(and thus we can’t say "get the 5th item in the bag")

• toArray(): get an array containing the current contents 
of the bag
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Implementing a Bag Using a Class

• To implement our bag data structure, we define a class:
public class ArrayBag {

private Object[] items;
private int numItems;

// constructors go here

public boolean add(Object item) {
...

}

• Each object of this class will represent an entire bag of items.

• The items themselves are stored in an array of type Object.

• allows us to store any type of object in the bag, 
thanks to the power of polymorphism:
ArrayBag bag = new ArrayBag();
bag.add("hello");
bag.add(new Rectangle(20, 30));

Memory Management: Looking Under the Hood

• To understand how data structures are implemented, 
you need to understand how memory is managed.

• There are three main types of memory allocation in Java.

• They correspond to three different regions of memory.
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Memory Management, Type I: Static Storage

• Static storage is used for class variables, which are declared 
outside any method using the keyword static:

public class MyMethods {
public static int numCompares;
public static final double PI = 3.14159;

• There is only one copy of each class variable. 

• shared by all objects of the class

• Java's version of a global variable

• The Java runtime allocates memory for class variables 
when the class is first encountered.

• this memory stays fixed for the duration of the program

Memory Management, Type II: Stack Storage

• Method parameters and local variables are stored in a region 
of memory known as the stack.

• For each method call, a new stack frame is added to the top 
of the stack.

public class Foo {
public static int x(int i) {

int j = i - 2;
if (i >= 6) {

return i;   // return 8
}
return x(i + j);

}
public static void 

main(String[] args) {
System.out.println(x(5));

}
}

• When a method completes, its stack frame is removed.

args

3

5

return addr

i

j

6

8

return addr

i

j

x(8)

x(5)
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Memory Management, Type III: Heap Storage

• Objects (including arrays) are stored in a region of memory 
known as the heap.

• Memory on the heap is allocated using the new operator:

int[] values = new int[3];
ArrayBag b = new ArrayBag();

• new returns the memory address of the start of the object.

• This memory address – which is referred to as a reference –
is stored in the variable that represents the object:

• We will often use an arrow to represent a reference:

000values

0x23a
0x23a

000values

Heap Storage (cont.)

• An object remains on the heap until there are no remaining 
references to it.

• Unused objects are automatically reclaimed by a process 
known as garbage collection.

• makes their memory available for other objects
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Two Constructors for the ArrayBag Class
public class ArrayBag {

private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;

}
public ArrayBag(int maxSize) {
...

}

• A class can have multiple constructors.
• the parameters must differ in some way

• The first one is useful for small bags.
• creates an array with room for 50 items.

• The second one allows the client to specify the max # of items.

Two Constructors for the ArrayBag Class
public class ArrayBag {

private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;

}
public ArrayBag(int maxSize) {

if (maxSize <= 0) {
throw new IllegalArgumentException(
"maxSize must be > 0");

}
this.items = new Object[maxSize];
this.numItems = 0;

}
...

}

• If the user inputs an invalid maxSize, we throw an exception.
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Example: Creating Two ArrayBag Objects

args

…

b1

b2

stack heap

items

0

nullnull
numItems

// client
public static void main(String[] args) {

ArrayBag b1 = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);

…
}

// constructor
public ArrayBag(int maxSize) {

...  // error-checking
this.items = new Object[maxSize];
this.numItems = 0;

}   // returns

Example: Creating Two ArrayBag Objects

args

…

b1

b2

stack heap

items

numItems

nullnullnull

items

0

nullnull
numItems

0

null
4maxSize

// client
public static void main(String[] args) {

ArrayBag b1 = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);

…
}

// constructor
public ArrayBag(int maxSize) {

...  // error-checking
this.items = new Object[maxSize];
this.numItems = 0;

}  // returns
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Example: Creating Two ArrayBag Objects
public static void main(String[] args) {

ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• After the objects have been created, here’s what we have:

args

…

b1

b2

stack heap

items

0

nullnull
numItems

items

numItems

nullnullnull

0

null

// client
public static void main(String[] args) {

ArrayBag b1 = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);

…
}

Copying References

• A variable that represents an array or object is known as a 
reference variable.

• Assigning the value of one reference variable to another 
reference variable copies the reference to the array or object. 
It does not copy the array or object itself.

int[] values = {5, 23, 61, 10};
int[] other = values;

• Given the lines above, what will the lines below output?

other[2] = 17;
System.out.println(values[2] + " " + other[2]);

1061235values

other
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Passing an Object/Array to a Method

• When a method is passed an object or array as a parameter, 
the method gets a copy of the reference to the object or array,
not a copy of the object or array itself.

• Thus, any changes that the method makes to the internals 
of the object/array will still be there when the method returns.

• Consider the following:

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void triple(int[] n) {
for (int i = 0; i < n.length; i++) {

n[i] = n[i] * 3;
}

}
What is the output?  

Passing an Object/Array to a Method (cont.)

n

a

main

321

a

main

321

triple

before method call

during method call

a

main

963

after method call

a

main

963

triple

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(...);

}
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Adding Items to an ArrayBag

• We fill the array from left to right. Here's an empty bag:

• After adding the first item:

• After adding the second item:

items

numItems 0

nullnullnullnull

items

numItems 1

"hello, world"

nullnullnull

items

numItems 2

"hello, world" "howdy"

nullnull

Adding Items (cont.)

• After adding the third item:

• After adding the fourth item:

• At this point, the ArrayBag is full!

• it's non-trivial to "grow" an array, so we don't!

• additional items cannot be added until one is removed

items

numItems 3

null

items

numItems 4

"hello, world" "howdy" "bye" "see ya!"

"hello, world" "howdy" "bye"
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A Method for Adding an Item to a Bag
public class ArrayBag {

private Object[] items;
private int numItems;
...
public boolean add(Object item) {

if (item == null) {
throw new IllegalArgumentException("no nulls");

} else if (this.numItems == this.items.length) {
return false;   // no more room! 

} else {
this.items[this.numItems] = item;
this.numItems++;
return true;    // success!

}
}
...

}

• Initially, this.numItems is 0, so the first item goes in position 0.

• We increase this.numItems because we now have 1 more item.
• and so the next item added will go in the correct position!

• takes an object of any type!
• returns a boolean to 

indicate if the operation 
succeeded

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• add's stack frame includes:
• item, which stores a copy of the reference passed as a param.
• this, which stores a reference to the called ArrayBag object

Example: Adding an Item (cont.)

public static void main(String[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack
items

numItems

nullnullnull

0

nullthis

"hello, world"

item

heap

public boolean add(Object item) {
…
else {

this.items[this.numItems] = item;
this.numItems++;
return true;

} …
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public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• The method modifies the items array and numItems.
• note that the array holds a copy of the reference to the item, 

not a copy of the item itself.

Example: Adding an Item
public static void main(String[] args) {

String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack
items

numItems

nullnull

1

nullthis

"hello, world"

item

heap

public boolean add(Object item) {
…
else {   

this.items[this.numItems] = item;
this.numItems++;
return true;

} …

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• After the method call returns, add's stack frame is removed
from the stack.

Example: Adding an Item
public static void main(String[] args) {

String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack
items

numItems

nullnull

1

null

"hello, world"

heap

public boolean add(Object item) {
…
else {

this.items[this.numItems] = item;
this.numItems++;
return true;

} …
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A Type Mismatch

• Here are the headers of two ArrayBag methods:

public boolean add(Object item)
public Object grab()

• Polymorphism allows us to pass String objects into add():

ArrayBag stringBag = new ArrayBag();
stringBag.add("hello");
stringBag.add("world");

• However, this will not work:
String str = stringBag.grab();   // compiler error

• the return type of grab() is Object

• Object isn’t a subclass of String, so polymorphism doesn't help!

• Instead, we need to use a type cast:
String str = (String)stringBag.grab();

• this cast doesn't actually change the value being assigned

• it just reassures the compiler that the assignment is okay

Extra Practice: Determining if a Bag Contains an Item

• Let’s write the ArrayBag contains() method together.

• should return true if an object equal to item is found, 
and false otherwise.

_________________ contains(_____________ item) {

}

items

numItems 3

"hello, world"

…nullnullnullnull

"oh my!" "what's in the bag?"
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Would this work instead?

• Let’s write the ArrayBag contains() method together.

• should return true if an object equal to item is found, 
and false otherwise.

public boolean contains(Object item) {
for (int i = 0; i < this.items.length; i++) {  

if (this.items[i].equals(item)) { // not ==
return true;

}
}
return false;     

}

items

numItems 3

"hello, world"

…nullnullnullnull

"oh my!" "what's in the bag?"

Another Incorrect contains() Method
public boolean contains(Object item) {

for (int i = 0; i < this.numItems; i++) {
if (this.items[i].equals(item)) {

return true;
} else {

return false;
}     

}
return false;

}

• What's the problem with this?
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Recursion and 
Recursive Backtracking

Computer Science E-22
Harvard Extension School

David G. Sullivan, Ph.D.

Iteration

• When we encounter a problem that requires repetition, 
we often use iteration – i.e., some type of loop.

• Sample problem: printing the series of integers from 
n1 to n2, where n1 <= n2.

• example: printSeries(5, 10) should print the following:

5, 6, 7, 8, 9, 10

• Here's an iterative solution to this problem: 

public static void printSeries(int n1, int n2) {
for (int i = n1; i < n2; i++) {

System.out.print(i + ", ");
}
System.out.println(n2);         

}
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Recursion

• An alternative approach to problems that require repetition 
is to solve them using recursion.

• A recursive method is a method that calls itself.

• Applying this approach to the print-series problem gives: 

public static void printSeries(int n1, int n2) {
if (n1 == n2) {                 

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}    
}

Tracing a Recursive Method

public static void printSeries(int n1, int n2) {
if (n1 == n2) {                  

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

} 
}

• What happens when we execute  printSeries(5, 7)? 

printSeries(5, 7):
System.out.print(5 + ", ");
printSeries(6, 7):

System.out.print(6 + ", ");
printSeries(7, 7):

System.out.print(7);
return

return
return
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Recursive Problem-Solving

• When we use recursion, we solve a problem by reducing it 
to a simpler problem of the same kind.

• We keep doing this until we reach a problem that is 
simple enough to be solved directly.  

• This simplest problem is known as the base case.

public static void printSeries(int n1, int n2) {
if (n1 == n2) {           // base case

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• The base case stops the recursion, because it doesn't
make another call to the method.

Recursive Problem-Solving (cont.)

• If the base case hasn't been reached, we execute the
recursive case.

public static void printSeries(int n1, int n2) {
if (n1 == n2) {           // base case

System.out.println(n2);
} else {                  // recursive case

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• The recursive case:

• reduces the overall problem to one or more simpler problems
of the same kind

• makes recursive calls to solve the simpler problems

CSCI E-22 Harvard Extension School 25



Structure of a Recursive Method

recursiveMethod(parameters) {
if (stopping condition) {

// handle the base case
} else {

// recursive case:
// possibly do something here

recursiveMethod(modified parameters);

// possibly do something here
}

}

• There can be multiple base cases and recursive cases.

• When we make the recursive call, we typically use parameters 
that bring us closer to a base case.

Tracing a Recursive Method: Second Example

public static void mystery(int i) {
if (i <= 0) {     // base case

return;
}
// recursive case
System.out.println(i);
mystery(i – 1);
System.out.println(i); 

}

• What happens when we execute  mystery(2)?
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A Recursive Method That Returns a Value

• Simple example: summing the integers from 1 to n

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);    
return n + rest;     

}

• Example of this approach to computing the sum:

sum(6)   = 6 + sum(5) 
= 6 + 5 + sum(4)

…

Tracing a Recursive Method

public static int sum(int n) {
if (n <= 0) {                 

return 0;
}
int rest = sum(n - 1);  
return n + rest; 

}

• What happens when we execute  int x = sum(3);

from inside the main() method?

main() calls sum(3)
sum(3) calls sum(2)

sum(2) calls sum(1)
sum(1) calls sum(0)

sum(0) returns 0
sum(1) returns 1 + 0 or 1

sum(2) returns 2 + 1 or 3
sum(3) returns 3 + 3 or 6

main() assigns 6 to x 
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Tracing a Recursive Method on the Stack

public static int sum(int n) {
if (n <= 0) {                 

return 0;
}
int rest = sum(n - 1);
return n + rest; 

}

Example: sum(3)

return 0

time

3n
rest

2n
rest

1n
rest

0n
rest

3n
rest

2n
rest

1n
rest 0

3n
rest

2n
rest 1

3n
rest 3

3n
rest

3n
rest

2n
rest

3n
rest

2n
rest

1n
rest

return 1+0

return 2+1

base case

return 3+3

final result: 6

rest = sum(0) 
= 0

The final result
gets built up 
on the way back
from the base case!

Infinite Recursion

• We have to ensure that a recursive method will eventually 
reach a base case, regardless of the initial input.  

• Otherwise, we can get infinite recursion.

• produces stack overflow - there's no room for 
more frames on the stack!

• Example: here's a version of our sum() method that uses 
a different test for the base case:

public static int sum(int n) {
if (n == 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest; 

}

• what values of n would cause infinite recursion?
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Designing a Recursive Method

1. Start by programming the base case(s).

• What instance(s) of this problem can I solve directly 
(without looking at anything smaller)?

2. Find the recursive substructure.

• How could I use the solution to any smaller version
of the problem to solve the overall problem?

3. Solve the smaller problem using a recursive call!

• store its result in a variable

4. Do your one step.

• build your solution from the result of the recursive call

• use concrete cases to figure out what you need to do

Processing a String Recursively

• A string is a recursive data structure. It is either:

• empty ("")

• a single character, followed by a string

• Thus, we can easily use recursion to process a string.

• process one or two of the characters ourselves

• make a recursive call to process the rest of the string

• Example: print a string vertically, one character per line:

public static void printVertical(String str) {
if (str == null || str.equals("")) {

return;
}

System.out.println(str.charAt(0)); // first char
printVertical(str.substring(1));   // rest of string

}
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Short-Circuited Evaluation

• The second operand of both the && and || operators 
will not be evaluated if the result can be determined on the 
basis of the first operand alone.

• expr1 || expr2

if expr1 evaluates to true, expr2 is not evaluated,
because we already know that expr1 || expr2 is true

• example from the last slide:
if (str == null || str.equals("")) {

return;
}

// if str is null, we won't check for empty string.
// This prevents a null pointer exception!

• expr1 && expr2

if expr1 evaluates to , expr2 is not evaluated,
because we already know that expr1 && expr2 is .

Counting Occurrences of a Character in a String

• numOccur(c, s) should return the number of times that
the character c appears in the string s 

• numOccur('n', "banana") should return 2

• numOccur('a', "banana") should return 3

• Take the approach outlined earlier:

• base case: empty string (or null)

• delegate s.substring(1) to the recursive call

• we're responsible for handling s.charAt(0)
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Recursive Counting 

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
// do our one step!
...

Determining Our One Step

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
// do our one step!

• In our one step, we take care of s.charAt(0). 

• we build the solution to the larger problem on the
solution to the smaller problem (in this case, rest)

• does what we do depend on the value of s.charAt(0)? 

• Use concrete cases to figure out the logic!
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Consider this concrete case…

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
// do our one step!
...

numOccur('r', "recurse")

What value is eventually assigned to rest?
(i.e., what does the recursive call return?)

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
// do our one step!
...

numOccur('r', "recurse")

numOccur('r', "recurse")
c = 'r', s = "recurse"
int rest = ???
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Consider Concrete Cases

numOccur('r', "recurse")     # first char is a match

• what is its solution?   

• what is the next smaller subproblem?    

• what is the solution to that subproblem?   

• how can we use the solution to the subproblem?
What is our one step?    

numOccur('a', "banana")     # first char is not a match

• what is its solution?    

• what is the next smaller subproblem?  

• what is the solution to that subproblem?   

• how can we use the solution to the subproblem?
What is our one step?    

Now complete the method!

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
if (s.charAt(0) == c) {

return ___________________;
} else {

return ___________________;
}

}
}
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Tracing a Recursive Method on the Stack
public static int numOccur(char c, String s) {

if (s == null || s.equals("")) {
return 0;

} else {
int rest = numOccur(c, s.substring(1));
if (s.charAt(0) == c) {

return 1 + rest;
} else {

return rest;
}

}
}

numOccur('a', "aha")

time

"aha"s
rest

return 0

base case

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest 1

"ha"s
rest

"ha"s
rest

"ha"s
rest

"ha"s
rest

"ha"s
rest 1

"a"s
rest

"a"s
rest

"a"s
rest 0

""s
rest

return 1+0

return 1

return 1+1

The final result
gets built up 
on the way back
from the base case!

Common Mistake

• This version of the method does not work:

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
}

int count = 0;
if (s.charAt(0) == c) {

count++;
}

numOccur(c, s.substring(1));
return count;

}
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Another Faulty Approach

• Some people make count "global" to fix the prior version:

public static int count = 0;

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
}

if (s.charAt(0) == c) {
count++;

}

numOccur(c, s.substring(1));
return count;

}

• Not recommended, and not allowed on the problem sets!

• Problems with this approach?

Removing Vowels From a String

• removeVowels(s) - removes the vowels from the string s,   
returning its "vowel-less" version!

removeVowels("recursive") should return "rcrsv"

removeVowels("vowel") should return "vwl"

• Can we take the usual approach to recursive string processing?

• base case: empty string

• delegate s.substring(1) to the recursive call

• we're responsible for handling s.charAt(0)
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Applying the String-Processing Template

public static String removeVowels(String s) {
if (s.equals("")) { // base case

return __________;
} else { // recursive case

String rem_rest = __________________;
// do our one step!

} 
}

Consider Concrete Cases

removeVowels("after")     # first char is a vowel

• what is its solution?   

• what is the next smaller subproblem?   

• what is the solution to that subproblem?   

• how can we use the solution to the subproblem?
What is our one step?    

removeVowels("recurse")   # first char is not a vowel

• what is its solution?  

• what is the next smaller subproblem?  

• what is the solution to that subproblem?   

• how can we use the solution to the subproblem?
What is our one step?    
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removeVowels()

public static String removeVowels(String s) {
if (s.equals("")) { // base case

return "";
} else { // recursive case

String rem_rest = removeVowels(s.substring(1));
if ("aeiou".indexOf(s.charAt(0)) != -1) {

____________________________________
} else {

____________________________________
}

}
} 

The n-Queens Problem

• Goal: to place n queens on an n x n chessboard 
so that no two queens occupy:

• the same row

• the same column

• the same diagonal.

• Sample solution for n = 8:

• This problem can be solved using a technique called 
recursive backtracking.

Q

Q

Q

Q

Q

Q

Q

Q
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Recursive Strategy for n-Queens

• findSolution(row) – to place a queen in the specified row: 

• try one column at a time, looking for a "safe" one

• if we find one:  – place the queen there
– make a recursive call to go to the next row

• if we can’t find one:  – backtrack by returning from the call
– try to find another safe column 

in the previous row

• Example:
• row 0:

• row 1: Q Q

Q

Q

Q

col 0: same col col 1: same diag col 2: safe

col 0: safe

Q

Q

4-Queens Example (cont.)

• row 2:

• We’ve run out of columns in row 2!

• Backtrack to row 1 by returning from the recursive call.
• pick up where we left off

• we had already tried columns 0-2, so now we try column 3:

• Continue the recursion as before.

Q

Q

Q

Q

Q

Q

Q

Q

col 0: same col col 1: same diag

Q

Q

Q

col 3: same diag

Q Q

Q

we left off in col 2 try col 3: safe

Q

col 2: same col/diag
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4-Queens Example (cont.)

• row 2:

• row 3:

• Backtrack to row 2:

• Backtrack to row 1.  No columns left, so backtrack to row 0!

Q

Q

Q

Q

Q

col 0: same col col 1: safe

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

col 0: same col/diag col 2: same diag

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

we left off in col 1 col 2: same diag col 3: same col

Q

Q

col 3: same col/diagcol 1: same col/diag

Q

Q

Q

Q

4-Queens Example (cont.)

• row 0:

• row 1:

• row 2:

• row 3:

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

A solution!
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A Blueprint Class for an N-Queens Solver
public class NQueens {

private boolean[][] board;  // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

}

...

• Here's what the object 
looks like initially:

board

//other fields

NQueens object

falsefalsefalsefalse

falsefalsefalsefalse

falsefalsefalsefalse

falsefalsefalsefalse

A Blueprint Class for an N-Queens Solver
public class NQueens {

private boolean[][] board;  // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

}

private void placeQueen(int row, int col) {
this.board[row][col] = true;
// modify other fields here...

}

• Here's what it looks like
after placing some queens:

Q

Q

Q

falsefalsefalsetrue

truefalsefalsefalse

falsefalsetruefalse

falsefalsefalsefalse

board

//other fields

NQueens object
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A Blueprint Class for an N-Queens Solver
public class NQueens {

private boolean[][] board;  // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

}

private void placeQueen(int row, int col) {
this.board[row][col] = true;
// modify other fields here...

}

private void removeQueen(int row, int col){
this.board[row][col] = false;
// modify other fields here...

}

private boolean isSafe(int row, int col) {
// returns true if [row][col] is "safe", else false

}

private boolean findSolution(int row) { 
// see next slide!

...

private helper methods
that will only be called 
by code within the class.

Making them private
means we don't need
to do error-checking!

Recursive-Backtracking Method
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}      
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

• takes the index of a row (initially 0)

• uses a loop to consider all possible columns in that row

• makes a recursive call to move onto the next row

• returns true if a solution has been found; false otherwise
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Tracing findSolution()
private boolean findSolution(int row) {

if (row == this.board.length) {
// code to process a solution goes here...

}      
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 1
col: 0,1,2

row: 0
col: 0

row: 0
col: 0

row: 2
col: 0,1

row: 1
col: 0,1,2,3

row: 0
col: 0

backtrack!
row: 2
col:0,1,2,3,4
return false

row: 1
col: 0,1,2

row: 0
col: 0

We can pick up
where we left off,
because row and
col are stored in
the stack frame!

row: 1
col: 0,1,2

row: 0
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 0

Q

Q

Q

row: 3
col:0,1,2,3,4
return false

row: 2
col: 0,1

row: 1
col: 0,1,2,3

row: 0
col: 0

backtrack!

…

Note: row++ 
will not work 
here!

Once we place a queen in the last row…
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}      
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

…

Q

Q

Q

Q

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1
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private boolean findSolution(int row) {
if (row == this.board.length) {

this.displayBoard();
return true;

}      
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…

Q

Q

Q

Q

row: 4

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…we make one more recursive call…

…and hit the base case!
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…

Q

Q

Q

Q

row: 4
return true

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1
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true is sent back…
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}      
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) { // if (true)

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…

Q

Q

Q

Q

row: 4
return true

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

...and all the earlier calls also return true!
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}      
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) { // if (true)

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…

Q

Q

Q

Q

row: 4
return true

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

row: 3
col:0,1,2
return true

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

row: 2
col: 0
return true

row: 1
col: 0,1,2,3

row: 0
col: 1

…
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Using a "Wrapper" Method

• The key recursive method is private:

private boolean findSolution(int row) {
...

}

• We use a separate, public "wrapper" method
to start the recursion:

public boolean findSolution() {
return this.findSolution(0);

}

• an example of overloading – two methods with 
the same name, but different parameters

• this method takes no parameters

• it makes the initial call to the recursive method
and returns whatever that call returns

• it allows us to ensure that the correct initial value
is passed into the recursive method

Recursive Backtracking in General

• Useful for constraint satisfaction problems

• involve assigning values to variables according to 
a set of constraints

• n-Queens: variables = Queen’s position in each row
constraints = no two queens in same row/col/diag

• many others: factory scheduling, room scheduling, etc.

• Backtracking greatly reduces the number of possible solutions 
that we consider.

• ex:                   

• Recursion makes it easy to handle an arbitrary problem size.

• stores the state of each variable in a separate stack frame

Q

Q

• there are 16 possible solutions that 
begin with queens in these two positions

• backtracking doesn't consider any of them!
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Template for Recursive Backtracking

// n is the number of the variable that the current
// call of the method is responsible for
boolean findSolution(int n, possibly other params) {

if (found a solution) {
this.displaySolution();
return true;

}      

// loop over possible values for the nth variable
for (val = first to last) {

if (this.isValid(val, n)) {
this.applyValue(val, n);
if (this.findSolution(n + 1, other params)) {

return true;
}
this.removeValue(val, n);

}
}

return false;     // backtrack!
}

Note: n++ 
will not work 
here!

Template for Finding Multiple Solutions 
(up to some target number of solutions) 

boolean findSolutions(int n, possibly other params) {
if (found a solution) {

this.displaySolution();
this.solutionsFound++;
return (this.solutionsFound >= this.target);

}      

// loop over possible values for the nth variable
for (val = first to last) {

if (isValid(val, n)) {
this.applyValue(val, n);
if (this.findSolutions(n + 1, other params)) {

return true;
}
this.removeValue(val, n);

}
}

return false;
}
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Data Structures for n-Queens

• Three key operations:
• isSafe(row, col): check to see if a position is safe
• placeQueen(row, col)

• removeQueen(row, col)

• In theory, our 2-D array of booleans would be sufficient:

public class NQueens {
private boolean[][] board;

• It's easy to place or remove a queen:

private void placeQueen(int row, int col) {
this.board[row][col] = true;

}
private void removeQueen(int row, int col) {

this.board[row][col] = false;
}

…

• Problem: isSafe() takes a lot of steps.  What matters more?

Additional Data Structures for n-Queens

• To facilitate isSafe(), add three arrays of booleans:
private boolean[] colEmpty;
private boolean[] upDiagEmpty;
private boolean[] downDiagEmpty;

• An entry in one of these arrays is: 
– true if there are no queens in the column or diagonal
– false otherwise

• Numbering diagonals to get the indices into the arrays:

upDiag = row + col

3

2

1

0

3210

6543

5432

4321

3210

3

2

1

0

3210

3456

2345

1234

0123

downDiag = 
(boardSize – 1) + row – col
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Using the Additional Arrays

• Placing and removing a queen now involve updating four 
arrays instead of just one.  For example:

private void placeQueen(int row, int col) {
this.board[row][col] = true;
this.colEmpty[col] = false;
this.upDiagEmpty[row + col] = false; 
this.downDiagEmpty[

(this.board.length - 1) + row - col] = false;
}

• However, checking if a square is safe is now more efficient: 

private boolean isSafe(int row, int col) {
return (this.colEmpty[col] 
&& this.upDiagEmpty[row + col]
&& this.downDiagEmpty[

(this.board.length - 1) + row - col]);
}

Recursive Backtracking II: Map Coloring

• We want to color a map using only four colors.

• Bordering states or countries cannot have the same color.

• example:

not allowed!
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Applying the Template to Map Coloring
boolean findSolution(n, perhaps other params) {

if (found a solution) {
this.displaySolution();
return true;

}      
for (val = first to last) {

if (this.isValid(val, n)) {
this.applyValue(val, n);
if (this.findSolution(n + 1, other params)) {

return true;
}
this.removeValue(val, n);

}
}
return false;

}

template element

n

found a solution

val

isValid(val, n)

applyValue(val, n)

removeValue(val, n)

meaning in map coloring

consider the states in alphabetical order.  colors = { red, yellow, green, blue }.

No color works for Wyoming,
so we backtrack…

Map Coloring Example

We color Colorado through
Utah without a problem.

Colorado: 
Idaho: 
Kansas: 
Montana: 
Nebraska: 
North Dakota: 
South Dakota: 
Utah: 
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Map Coloring Example (cont.)

Now we can complete
the coloring:

Recursion vs. Iteration

• Some problems are much easier to solve using recursion.

• Other problems are just as easy to solve using iteration.

• Recursion is a bit more costly because of the overhead involved 
in invoking a method.

• also: in some cases, there may not be room on the stack

• Rule of thumb:

• if it's easier to formulate a solution recursively, use recursion, 
unless the cost of doing so is too high

• otherwise, use iteration
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A First Look at
Sorting and Algorithm Analysis

Computer Science E-22
Harvard Extension School

David G. Sullivan, Ph.D.

Sorting an Array of Integers

• Ground rules:
• sort the values in increasing order
• sort “in place,” using only a small amount of additional storage

• Terminology:
• position: one of the memory locations in the array
• element: one of the data items stored in the array
• element i: the element at position i

• Goal: minimize the number of comparisons C and the number 
of moves M needed to sort the array.

• move = copying an element from one position to another
example:  arr[3] = arr[5];

36715

210

arr 1240

n-1n-2
…
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Defining a Class for our Sort Methods
public class Sort {

public static void bubbleSort(int[] arr) {
...

}
public static void insertionSort(int[] arr) {

...
}
...

}

• Our Sort class is simply a collection of methods like Java’s 
built-in Math class.

• Because we never create Sort objects, all of the methods in 
the class must be static.

• outside the class, we invoke them using the class name: 
e.g.,  Sort.bubbleSort(arr)

Defining a Swap Method

• It would be helpful to have a method that swaps two elements 
of the array.

• Why won’t the following work?

private static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}
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private static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

• Trace through the following lines to see the problem:

int[] arr = {15, 7, …};
swap(arr[0], arr[1]);

stack heap

...

arr

An Incorrect Swap Method

15 7

A Correct Swap Method

• This method works:
private static void swap(int[] arr, int a, int b) {

int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;

}

• Trace through the following with a memory diagram to convince 
yourself that it works:

int[] arr = {15, 7, …};
swap(arr, 0, 1);
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43210

Selection Sort

• Basic idea:
• consider the positions in the array from left to right
• for each position, find the element that belongs there 

and swap it with the element that’s currently there

• Example:
432100

43210 1

6121531

43210

3121561

3122615 1

1512631

Why don’t we need to consider position 4?

Selecting an Element

• When we consider position i, the elements in positions 
0 through i – 1 are already in their final positions. 

example for i = 3:

• To select an element for position i:

• consider elements i, i+1,i+2,…,arr.length – 1, and
keep track of indexMin, the index of the smallest element 
seen thus far

• when we finish this pass, indexMin is the index of the 
element that belongs in position i.

• swap arr[i] and arr[indexMin]:

17102521742

6543210

indexMin: 3 17102521742

6543210

17102521742

6543210

10 21

, 5 1010
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Implementation of Selection Sort

• Use a helper method to find the index of the smallest element:
private static int indexSmallest(int[] arr, int start) {

int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
if (arr[i] < arr[indexMin]) {

indexMin = i;
}

}

return indexMin;
}

• The actual sort method is very simple:
public static void selectionSort(int[] arr) {

for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, i);
swap(arr, i, j);

}
}

Time Analysis

• Some algorithms are much more efficient than others.

• The time efficiency or time complexity of an algorithm is some 
measure of the number of operations that it performs.

• for sorting, we’ll focus on comparisons and moves

• We want to characterize how the number of operations 
depends on the size, n, of the input to the algorithm.

• for sorting, n is the length of the array

• how does the number of operations grow as n grows?

• We'll express the number of operations as functions of n

• C(n) = number of comparisons for an array of length n

• M(n) = number of moves for an array of length n
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Counting Comparisons by Selection Sort
private static int indexSmallest(int[] arr, int start){

int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
if (arr[i] < arr[indexMin]) {

indexMin = i;
}

}

return indexMin;
}
public static void selectionSort(int[] arr) {

for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, i);
swap(arr, i, j);

}
}

• To sort n elements, selection sort performs n - 1 passes:

on 1st pass, it performs ____ comparisons to find indexSmallest
on 2nd pass, it performs ____ comparisons

…
on the (n-1)st pass, it performs 1 comparison

• Adding them up: C(n) = 1 + 2 + … + (n - 2) + (n - 1) 

Counting Comparisons by Selection Sort (cont.)

• The resulting formula for C(n) is the sum of an arithmetic 
sequence:

C(n) = 1 + 2 + … + (n - 2) + (n - 1) =

• Formula for the sum of this type of arithmetic sequence:

• Thus, we can simplify our expression for C(n) as follows:

C(n) =

=

=




1 - n

1  i

i

2

1)m(m
  i

m

1  i









1 - n

1  i

i

2

1)1)-1)((n-(n
 



2

1)n-(n
 2n- 2n2C(n) =
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Focusing on the Largest Term

• When n is large, mathematical expressions of n are dominated 
by their “largest” term — i.e., the term that grows fastest as a 
function of n.

• example: n n2/2 n/2 n2/2 – n/2
10 50 5 45
100 5000 50 4950
10000 50,000,000 5000 49,995,000

• In characterizing the time complexity of an algorithm, 
we’ll focus on the largest term in its operation-count expression.

• for selection sort, C(n) = n2/2 - n/2  n2/2

• In addition, we’ll typically ignore the coefficient of the largest term 
(e.g., n2/2  n2).

Big-O Notation

• We specify the largest term using big-O notation.

• e.g., we say that  C(n) = n2/2 – n/2 is O(n2)

• Common classes of algorithms:

name example expressions big-O notation
constant time 1, 7, 10 O(1)

logarithmic time 3log10n, log2n + 5 O(log n)

linear time 5n, 10n – 2log2n O(n)

nlogn time 4nlog2n, nlog2n + n O(nlog n)

quadratic time 2n2 + 3n, n2 – 1 O(n2)

exponential time 2n, 5en + 2n2 O(cn)

• For large inputs, efficiency matters more than CPU speed.

• e.g., an O(log n) algorithm on a slow machine will 
outperform an O(n) algorithm on a fast machine

sl
ow

er
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Ordering of Functions

• We can see below that: n2 grows faster than nlog2n
nlog2n grows faster than n
n grows faster than log2n

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12

n^2

n log n

n

log n

n

Ordering of Functions (cont.)

• Zooming in, we see that: n2 >= n for all n >= 1
nlog2n >= n for all n >= 2
n > log2n for all n >= 1

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6

n^2

n log n

n

log n
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Big-O Time Analysis of Selection Sort

• Comparisons: we showed that C(n) = n2/2 – n/2

• selection sort performs O(n2) comparisons

• Moves: after each of the n-1 passes, the algorithm does one swap.

• n-1 swaps, 3 moves per swap

• M(n) = 3(n-1) = 3n-3

• selection sort performs O(n) moves.

• Running time (i.e., total operations): ?

Mathematical Definition of Big-O Notation

• f(n) = O(g(n)) if there exist positive constants c and n0

such that  f(n) <=  cg(n) for all n >= n0

• Example: f(n) = n2/2 – n/2 is O(n2), because
n2/2 – n/2 <=  n2 for all n >= 0.

• Big-O notation specifies an upper bound on a function f(n) 
as n grows large.

n

f(n) = n2/2 – n/2

g(n) = n2

n0 = 0c = 1
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Big-O Notation and Tight Bounds

• Strictly speaking, big-O notation provides an upper bound, 
not a tight bound (upper and lower).

• Example: 

• 3n – 3 is O(n2) because 3n – 3 <= n2 for all n >= 1

• 3n – 3 is also O(2n) because 3n – 3 <= 2n for all n >= 1

• However, it is common to use big-O notation to characterize 
a function as closely as possible – as if it specified a tight bound.

• for our example, we would say that 3n – 3 is O(n)

• this is how you should use big-O in this class!

Insertion Sort

• Basic idea:

• going from left to right, “insert” each element into its proper 
place with respect to the elements to its left

• “slide over” other elements to make room

• Example:

6122415

43210

6122154

6121542

6151242

1512642

4

2

12

6
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Comparing Selection and Insertion Strategies

• In selection sort, we start with the positions in the array and 
select the correct elements to fill them.

• In insertion sort, we start with the elements and determine 
where to insert them in the array.

• Here’s an example that illustrates the difference:

• Sorting by selection:
• consider position 0: find the element (2) that belongs there
• consider position 1: find the element (9) that belongs there
• …

• Sorting by insertion:
• consider the 12: determine where to insert it
• consider the 15; determine where to insert it
• …

172259151218

6543210

Inserting an Element
• When we consider element i, elements 0 through i – 1

are already sorted with respect to each other. 

example for i = 3:

• To insert element i:
• make a copy of element i, storing it in the variable toInsert:

• consider elements i-1, i-2, …
• if an element  >  toInsert, slide it over to the right 
• stop at the first element  <=  toInsert

• copy toInsert into the resulting “hole”:

…919146

43210

919146

3210

191496

3210

9toInsert

919146

3210

9toInsert 1914
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Insertion Sort Example (done together)
description of steps 418132512

Implementation of Insertion Sort
public class Sort {

...
public static void insertionSort(int[] arr) {

for (int i = 1; i < arr.length; i++) {
if (arr[i] < arr[i-1]) {

int toInsert = arr[i];

int j = i;
do {

arr[j] = arr[j-1];
j = j - 1;

} while (j > 0  &&  toInsert < arr[j-1]);

arr[j] = toInsert;
}

}
}

}
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Time Analysis of Insertion Sort

• The number of operations depends on the contents of the array.

• best case: array is sorted
• each element is only compared to the element to its left
• we never execute the do-while loop!
• C(n) =_______, M(n) = _______, running time = ______

• worst case: array is in reverse order
• each element is compared to all of the elements to its left: 

arr[1] is compared to 1 element (arr[0])
arr[2] is compared to 2 elements (arr[0] and arr[1])
…
arr[n-1] is compared to n-1 elements

• C(n) = 1 + 2 + … + (n - 1) = _______

• similarly, M(n) = ______, running time = _______

• average case: elements are randomly arranged
• on average, each element is compared to half

of the elements to its left
• still get C(n) = M(n) = _______, running time = _______

also true if array
is almost sorted

Shell Sort

• Developed by Donald Shell

• Improves on insertion sort

• takes advantage of the fact that it's fast for almost-sorted arrays

• eliminates a key disadvantage: an element may need 
to move many times to get to where it belongs.

• Example: if the largest element starts out at the beginning of the 
array, it moves one place to the right on every insertion!

• Shell sort uses larger moves that allow elements to quickly get 
close to where they belong in the sorted array. 

11…2318305642999

1000…543210
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3) elements 2 and 5

Sorting Subarrays

• Basic idea:

• use insertion sort on subarrays that contain elements 
separated by some increment incr
• increments allow the data items to make larger “jumps”

• repeat using a decreasing sequence of increments

• Example for an initial increment of 3:

• three subarrays: 

• Sort the subarrays using insertion sort to get the following:

• Next, we complete the process using an increment of 1.

8920327101836

76543210

3920182714236

76543210

9 3 10 27 8 20 36 18

36 18 27 3 9 8

1) elements 0, 3, 6 2) elements 1, 4, 7

10 20

Shell Sort: A Single Pass

• We don’t actually consider the subarrays one at a time.

• For each element from position incr to the end of the array, 
we insert the element into its proper place with respect to 
the elements from its subarray that come before it.

• The same
example
(incr = 3):

8920327101836

76543210

8920336101827

8920183610327

8920183610327

8362018271039

20

9

8

1836208271039

36

18

10

27 36

3 18

27

3

CSCI E-22 Harvard Extension School 64



• When we consider element i, the other elements in its subarray
are already sorted with respect to each other. 

example for i = 6:
(incr = 3)

the other element’s in 9’s subarray (the 27 and 36) 
are already sorted with respect to each other

• To insert element i:
• make a copy of element i, storing it in the variable toInsert:

• consider elements i-incr, i-(2*incr), i-(3*incr),…
• if an element  >  toInsert, slide it right within the subarray
• stop at the first element  <=  toInsert

• copy toInsert into the “hole”:

8920183610327
76543210

…18271039

43210

9toInsert

8920183610327
76543210

9toInsert 36

Inserting an Element in a Subarray

8920183610327
76543210

27

The Sequence of Increments

• Different sequences of decreasing increments can be used.

• Our version uses values that are one less than a power of two.

• 2k – 1 for some k

• … 63, 31, 15, 7, 3, 1

• can get to the next lower increment using integer division:

incr = incr/2;

• Should avoid numbers that are multiples of each other.

• otherwise, elements that are sorted with respect to each other 
in one pass are grouped together again in subsequent passes

• repeat comparisons unnecessarily

• get fewer of the large jumps that speed up later passes

• example of a bad sequence: 64, 32, 16, 8, 4, 2, 1

• what happens if the largest values are all in odd positions?
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Implementation of Shell Sort
public static void shellSort(int[] arr) {

int incr = 1;
while (2 * incr <= arr.length) {

incr = 2 * incr;
}
incr = incr - 1;

while (incr >= 1) {
for (int i = incr; i < arr.length; i++) {

if (arr[i] < arr[i-incr]) {
int toInsert = arr[i];

int j = i;
do {

arr[j] = arr[j-incr];
j = j - incr;

} while (j > incr-1 && 
toInsert < arr[j-incr]);

arr[j] = toInsert;
}

}
incr = incr/2;

}
}

(If you replace incr with 1
in the for-loop, you get the
code for insertion sort.)

Time Analysis of Shell Sort

• Difficult to analyze precisely

• typically use experiments to measure its efficiency

• With a bad interval sequence, it’s O(n2) in the worst case.

• With a good interval sequence, it’s better than O(n2). 

• at least O(n1.5) in the average and worst case

• some experiments have shown average-case running times 
of O(n1.25) or even O(n7/6) 

• Significantly better than insertion or selection for large n:
n n2 n1.5 n1.25

10 100 31.6 17.8
100 10,000 1000 316
10,000 100,000,000 1,000,000 100,000
106 1012 109 3.16 x 107

• We’ve wrapped insertion sort in another loop and increased its 
efficiency!  The key is in the larger jumps that Shell sort allows.
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Practicing Time Analysis

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < n; i++) {

x += i;         // statement 1
for (int j = 0; j < i; j++) {

x += j;
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?

What about now?

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < 3*n + 4; i++) {

x += i;         // statement 1
for (int j = 0; j < i; j++) {

x += j;
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?
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Practicing Time Analysis

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < n; i++) {

x += i;         // statement 1
for (int j = 0; j < i; j++) {

x += j;     // statement 2
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 2 is executed as a function of the input n?

value of i number of times statement 2 is executed

43210

Bubble Sort

• Perform a sequence of passes from left to right

• each pass swaps adjacent elements if they are out of order

• larger elements “bubble up” to the end of the array

• At the end of the kth pass: 

• the k rightmost elements are in their final positions

• we don’t need to consider them in subsequent passes.

• Example:

after the first pass:

after the second:

after the third:

after the fourth:

515372428

375152824

372851524

372824515

372824155
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Implementation of Bubble Sort
public class Sort {

...
public static void bubbleSort(int[] arr) {

for (int i = arr.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {

if (arr[j] > arr[j+1]) {
swap(arr, j, j+1);

}
}

}
}

}

• Nested loops:

• the inner loop performs a single pass

• the outer loop governs: 

• the number of passes (arr.length - 1)

• the ending point of each pass (the current value of i)

Time Analysis of Bubble Sort

• Comparisons (n = length of array):

• they are performed in the inner loop

• how many repetitions does each execution 
of the inner loop perform? 

value of i number of comparisons
n – 1 n – 1 
n – 2 n – 2 

… …
2 2
1 1

1 + 2 + … + n – 1 =

public static void bubbleSort(int[] arr) {
for (int i = arr.length - 1; i > 0; i--) {

for (int j = 0; j < i; j++) {
if (arr[j] > arr[j+1]) {

swap(arr, j, j+1);
}

}
}

}
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Time Analysis of Bubble Sort

• Comparisons: the kth pass performs n - k comparisons,

so we get    C(n) = =   n2/2 – n/2 = O(n2)

• Moves: depends on the contents of the array

• in the worst case:  

• M(n) =
• in the best case: 

• Running time: 

• C(n) is always O(n2), M(n) is never worse than O(n2)

• therefore, the largest term of  C(n) + M(n) is O(n2)

• Bubble sort is a quadratic-time or O(n2) algorithm.

• can’t do much worse than bubble!




1 - n

1  i

i
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Sorting II: 
Divide-and-Conquer Algorithms,

Distributive Sorting

Computer Science E-22
Harvard Extension School

David G. Sullivan, Ph.D.

Quicksort

• Like bubble sort, quicksort uses an approach based on swapping 
out-of-order elements, but it’s more efficient.

• A recursive, divide-and-conquer algorithm:

• divide: rearrange the elements so that we end up with
two subarrays that meet the following criterion:

each element in left array <= each element in right array

example:

• conquer: apply quicksort recursively to the subarrays, 
stopping when a subarray has a single element

• combine: nothing needs to be done, because of the way
we formed the subarrays

136414812 131214486
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Partitioning an Array Using a Pivot

• The process that quicksort uses to rearrange the elements 
is known as partitioning the array.

• It uses one of the values in the array as a pivot,
rearranging the elements to produce two subarrays:
• left subarray: all values <= pivot
• right subarray: all values >= pivot

• The subarrays will not always have the same length.

• This approach to partitioning is one of several variants.

12918694157

12151896497

all values <= 9 all values >= 9

partition using a pivot of 9

equivalent to the criterion
on the previous page.

Possible Pivot Values

• First element or last element

• risky, can lead to terrible worst-case behavior

• especially poor if the array is almost sorted

• Middle element (what we will use)

• Randomly chosen element

• Median of three elements

• left, center, and right elements

• three randomly selected elements

• taking the median of three decreases the probability of 
getting a poor pivot

186121484 186121484

pivot = 18
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Partitioning an Array: An Example

• Maintain indices i and j, starting them “outside” the array:

• Find “out of place” elements: 
• increment i until  arr[i] >= pivot

• decrement j until  arr[j] <= pivot

• Swap arr[i] and arr[j]:

12918694157

12918694157

12151869497

i j

i j

i j

i = first – 1

j = last + 1

12918694157arr

pivot = 9

first last

Partitioning Example (cont.)

from prev. page:

• Find:

• Swap:

• Find:

and now the indices have crossed, so we return j.

• Subarrays: left = from  first to  j, right =  from j+1 to last

12151869497

12151869497

12151896497

i j

i j

12151896497

i j

12151896497

j i

j ifirst last
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Partitioning Example 2

• Start
(pivot = 13):

• Find:

• Swap:

• Find:

and now the indices are equal, so we return j.

• Subarrays:

1920418132524

1920418132524

1920241813254

i j

i j

1920241813254

i j

1920241813254

i j

i j

24 4

13

Partitioning Example 3 (done together)

• Start
(pivot = 5):

• Find:

62619257144

62619257144

i j
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Partitioning Example 4

• Start
(pivot = 15):

• Find:

186920157108

186920157108

i j

partition() Helper Method
private static int partition(int[] arr, int first, int last) 
{

int pivot = arr[(first + last)/2];
int i = first - 1;  // index going left to right
int j = last + 1;   // index going right to left
while (true) {

do {
i++;

} while (arr[i] < pivot);
do {

j--;
} while (arr[j] > pivot); 
if (i < j) {

swap(arr, i, j);
} else {

return j;   // arr[j] = end of left array
}

}                   
}

…12918694157…

first last
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Implementation of Quicksort
public static void quickSort(int[] arr) { // "wrapper" method

if (arr.length <= 1) {
return;

}
qSort(arr, 0, arr.length - 1); 

}

private static void qSort(int[] arr, int first, int last) {
int split = partition(arr, first, last);

if (first < split) {  // if left subarray has 2+ values
qSort(arr, first, split);  // sort it recursively!

}
if (last > split + 1) {       // if right has 2+ values

qSort(arr, split + 1, last);  // sort it!
}

}   // note: base case is when neither call is made!

…12151896497…

first last
split
(j)

A Quick Review of Logarithms

• logbn = the exponent to which b must be raised to get n

• logbn = p if  bp = n

• examples: log28 = 3 because 23 = 8 

log1010000 = 4 because 104 = 10000

• Another way of looking at log2n: 

• let's say that you repeatedly divide n by 2 (using integer division)

• log2n is an upper bound on the number of divisions 
needed to reach 1

• example: log218 is approx. 4.17

18/2 = 9   9/2 = 4   4/2 = 2   2/2 = 1
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A Quick Review of Logs (cont.)

• O(log n) algorithm – one in which the number of operations
is proportional to logbn for any base b

• logbn grows much more slowly than n

• Thus, for large values of n: 

• a O(log n) algorithm is much faster than a O(n) algorithm
• logn <<  n

• a O(nlog n) algorithm is much faster than a O(n2) algorithm
• n * logn <<  n * n
nlog n    <<  n2

log2nn

12

101024 (1K)

201024*1024 (1M)

301024*1024*1024 (1G)

it's also faster than a O(n1.5)
algorithm like Shell sort

Time Analysis of Quicksort

• Partitioning an array of length n requires approx. n comparisons.
• most elements are compared with the pivot once; a few twice

• best case: partitioning always divides the array in half
• repeated recursive calls give: 

n

2*(n/2) = n

4*(n/4) = n 

... ... ... ... ... ... ...

0

• at each "row" except the bottom, we perform n comparisons
• there are _______ rows that include comparisons
• C(n) = ?

• Similarly, M(n) and running time are both __________

n/2n/2

n/4n/4n/4n/4

1111 1 1 1 1 1

comparisons

...

n

…1
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Time Analysis of Quicksort (cont.)

• worst case: pivot is always the smallest or largest element
• one subarray has 1 element, the other has n - 1

• repeated recursive calls give:

n

n-1

n-2

n-3
.......

2

• C(n) =     = O(n2).

• average case is harder to analyze
• C(n) > nlog2n, but it’s still O(nlog n)

n-1

n

1

n-21

n-31

1

1 1

...

comparisons




n

2  i

i M(n) and run time are also O(n2).

2

Mergesort

• The algorithms we've seen so far have sorted the array in place.

• use only a small amount of additional memory

• Mergesort requires an additional temporary array 
of the same size as the original one.

• it needs O(n) additional space, where n is the array size

• It is based on the process of merging two sorted arrays.

• example:

11975

241482

24141198752
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Merging Sorted Arrays

• To merge sorted arrays A and B into an array C, we maintain 
three indices, which start out on the first elements of the arrays:

• We repeatedly do the following:
• compare A[i] and B[j]
• copy the smaller of the two to C[k]
• increment the index of the array whose element was copied
• increment k

241482

11975 

i

j

A

B

C

k

2

241482

11975 

i

j

A

B

C

k

Merging Sorted Arrays (cont.)

• Starting point:

• After the first copy:

• After the second copy:

241482

11975 

i

j

A

B

C

k

2

241482

11975 

i

j

A

B

C

k

52

241482

11975 

i

j

A

B

C

k
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Merging Sorted Arrays (cont.)

• After the third copy:

• After the fourth copy:

• After the fifth copy:

752

241482

11975 

i

j

A

B

C

k

8752

241482

11975 

i

j

A

B

C

k

98752

241482

11975 

i

j

A

B

C

k

Merging Sorted Arrays (cont.)

• After the sixth copy:

• There's nothing left in B, so we simply copy the remaining 
elements from A:

1198752

241482

11975 

i

j

A

B

C

k

24141198752

241482

11975 

i

j

A

B

C

k
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Divide and Conquer

• Like quicksort, mergesort is a divide-and-conquer algorithm.

• divide: split the array in half, forming two subarrays

• conquer: apply mergesort recursively to the subarrays, 
stopping when a subarray has a single element

• combine: merge the sorted subarrays

272336 4148 12

4148 12 27233 6

8 12 4 14 33 6 27 2

12 8 14 4 6 33 2 27

12 8 14 4 33 6 27 2

14128 4 33276 2

33271412 864 2

split

split

split

merge

merge

merge

Tracing the Calls to Mergesort

272336 4148 12

272336 4148 12

4148 12

8 12

272336 4148 12

4148 12

split into two 4-element subarrays, and make a recursive call to sort the left subarray:

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

the initial call is made to sort the entire array:
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Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

12

8 12

272336 4148 12

4148 12

base case, so return to the call for the subarray {12, 8}:

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

8 12

272336 4148 12

4148 12

base case, so return to the call for the subarray {12, 8}:

make a recursive call to sort its right subarray:

8
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Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

end of the method, so return to the call for the 4-element subarray, which now has 
a sorted left subarray:

merge the sorted halves of {12, 8}:

12 8

272336 4148 12

41412 8

Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

make a recursive call to sort the right subarray of the 4-element subarray

272336 4148 12

41412 8

4 14

14 base case…
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Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

make a recursive call to sort its right subarray:

return to the call for the subarray {14, 4}:

272336 4148 12

41412 8

4 14

4 base case…

Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

merge the sorted halves of {14, 4}: 

return to the call for the subarray {14, 4}:

272336 4148 12

41412 8

4 14 14 4
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Tracing the Calls to Mergesort

272336 4148 12

14412 8

merge the 2-element subarrays: 

end of the method, so return to the call for the 4-element subarray, which now has 
two sorted 2-element subarrays:

272336 4148 12

14412 8 14128 4

Tracing the Calls to Mergesort

272336 14128 4

perform a similar set of recursive calls to sort the right subarray.  here's the result: 

end of the method, so return to the call for the original array, which now has a 
sorted left subarray:

332762 14128 4

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

332762 14128 4

33271412 864 2
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Implementing Mergesort

• In theory, we could create new arrays for each new pair of 
subarrays, and merge them back into the array that was split.

• Instead, we'll create a temp. array of the same size as the original.

• pass it to each call of the recursive mergesort method

• use it when merging subarrays of the original array:

• after each merge, copy the result back into the original array:

272336 14412 8arr

14128 4temp

272336 14128 4arr

14128 4temp

A Method for Merging Subarrays
private static void merge(int[] arr, int[] temp, 
int leftStart, int leftEnd, int rightStart, int rightEnd) {

int i = leftStart;    // index into left subarray
int j = rightStart;   // index into right subarray
int k = leftStart;    // index into temp

while (i <= leftEnd && j <= rightEnd) {
if (arr[i] < arr[j]) {

temp[k] = arr[i];
i++; k++;

} else {
temp[k] = arr[j];
j++; k++;

}
}

while (i <= leftEnd) {
temp[k] = arr[i];
i++; k++;

}
while (j <= rightEnd) {

temp[k] = arr[j];
j++; k++;

}

for (i = leftStart; i <= rightEnd; i++) {
arr[i] = temp[i];

}
}
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A Method for Merging Subarrays
private static void merge(int[] arr, int[] temp, 

int leftStart, int leftEnd, int rightStart, int rightEnd) {
int i = leftStart;    // index into left subarray
int j = rightStart;   // index into right subarray
int k = leftStart;    // index into temp

while (i <= leftEnd && j <= rightEnd) { // both subarrays still have values
if (arr[i] < arr[j]) {

temp[k] = arr[i];
i++; k++;

} else {
temp[k] = arr[j];
j++; k++;

}
}

...
}

…332762 14128 4…

leftStart

arr:

……temp:

leftEnd rightStart rightEnd

Methods for Mergesort

• Here's the key recursive method:
private static void mSort(int[] arr, int[] temp, int start, int end){ 

if (start >= end) {  // base case: subarray of length 0 or 1
return;

} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);
}

}

…272336 4148 12…

start

arr:

end

……temp:
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Methods for Mergesort

• Here's the key recursive method:
private static void mSort(int[] arr, int[] temp, int start, int end){ 

if (start >= end) {  // base case: subarray of length 0 or 1
return;

} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);
}

}

• We use a "wrapper" method to create the temp array, 
and to make the initial call to the recursive method:

public static void mergeSort(int[] arr) {
int[] temp = new int[arr.length];
mSort(arr, temp, 0, arr.length - 1);

}

Time Analysis of Mergesort

• Merging two halves of an array of size n requires 2n moves.  
Why?

• Mergesort repeatedly divides the array in half, so we have the
following call tree (showing the sizes of the arrays):

2n

2*2*(n/2) = 2n

4*2*(n/4) = 2n 

... ... ... ... ... ... ...

• at all but the last level of the call tree, there are 2n moves

• how many levels are there?
• M(n) = ?

• C(n) = ?

n/2n/2

n/4n/4n/4n/4

11111 1 1 1 1 1

moves

...

n

…
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Summary: Sorting Algorithms

• Insertion sort is best for nearly sorted arrays.

• Mergesort has the best worst-case complexity, but requires 
O(n) extra memory – and moves to and from the temp. array.

• Quicksort is comparable to mergesort in the best/average case.

• efficiency is also O(n log n), but less memory and fewer moves 

• its extra memory is from…

• with a reasonable pivot choice, its worst case is seldom seen

extra memoryworst caseavg casebest casealgorithm

O(1)O(n2)O(n2)O(n2)selection sort

O(1)O(n2)O(n2)O(n)insertion sort

O(1)O(n1.5)O(n1.5)O(n log n)Shell sort

O(1)O(n2)O(n2)O(n2)bubble sort

best/avg: O(log n)

worst: O(n)

O(n2)O(n log n)O(n log n)quicksort

O(n)O(nlog n)O(n log n)O(n log n)mergesort

Comparison-Based vs. Distributive Sorting

• All of the sorting algorithms we've considered have been 
comparison-based:

• treat the values being sorted as wholes (comparing them)

• don’t “take them apart” in any way

• all that matters is the relative order of the values

• No comparison-based sorting algorithm can do better than 
O(nlog2n) on an array of length n. 

• O(nlog2n) is a lower bound for such algorithms

• Distributive sorting algorithms do more than compare values; 
they perform calculations on the values being sorted.

• Moving beyond comparisons allows us to overcome 
the lower bound.  

• tradeoff: use more memory.
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Distributive Sorting Example: Radix Sort

• Breaks each value into a sequence of m components, 
each of which has k possible values.

• Examples: m k
• integer in range 0 ... 999 3 10
• string of 15 upper-case letters 15 26
• 32-bit integer 32 2 (in binary)

4      256 (as bytes)

• Strategy: Distribute the values into "bins" according to their 
last component, then concatenate the results:

33   41   12   24   31   14   13   42   34

get: 41   31  |  12   42   |   33   13   |   24   14   34

• Repeat, moving back one component each time:

get: 12   13   14 |   24 |   31   33   34 |   41   42

Analysis of Radix Sort

• m = number of components
k = number of possible values for each component
n = length of the array

• Time efficiency: O(m*n)

• perform m distributions, each of which processes all n values

• O(m*n) <  O(nlog n) when   m < log n

so we want m to be small

• However, there is a tradeoff:

• as m decreases, k increases
• fewer components  more possible values per component

• as k increases, so does memory usage
• need more bins for the results of each distribution

• increased speed requires increased memory usage
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Big-O Notation Revisited

• We've seen that we can group functions into classes by 
focusing on the fastest-growing term in the expression for the
number of operations that they perform.

• e.g., an algorithm that performs  n2/2 – n/2 operations is a 
O(n2)-time or quadratic-time algorithm

• Common classes of algorithms:

name example expressions big-O notation
constant time 1, 7, 10 O(1)

logarithmic time 3log10n, log2n + 5 O(log n)

linear time 5n, 10n – 2log2n O(n)

nlogn time 4nlog2n, nlog2n + n O(nlog n)

quadratic time 2n2 + 3n, n2 – 1 O(n2)

cubic time n2 + 3n3, 5n3 – 5 O(n3)

exponential time 2n, 5en + 2n2 O(cn)

factorial time 3n!, 5n + n! O(n!)

sl
ow

er

How Does the Number of Operations Scale?

• Let's say that we have a problem size of 1000, and we measure 
the number of operations performed by a given algorithm.  

• If we double the problem size to 2000, how would the number 
of operations performed by an algorithm increase if it is:

• O(n)-time

• O(n2)-time

• O(n3)-time

• O(log2n)-time

• O(2n)-time
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How Does the Actual Running Time Scale?

• How much time is required to solve a problem of size n?

• assume that each operation requires 1 sec (1 x 10-6 sec)

• sample computations:

• when n = 10, an n2 algorithm performs 102 operations.  
102 * (1 x 10-6 sec) = .0001 sec

• when n = 30, a 2n algorithm performs 230 operations.
230 * (1 x 10-6 sec) = 1073 sec = 17.9 min

problem size (n)time
function 605040302010

.00006 s.00005 s.00004 s.00003 s.00002 s.00001 sn
.0036 s.0025 s.0016 s.0009 s.0004 s.0001 sn2

13.0 min5.2 min1.7 min24.3 s3.2 s.1 sn5

36,600 yrs35.7 yrs12.7 days17.9 min1.0 s.001 s2n

What's the Largest Problem That Can Be Solved?

• What's the largest problem size n that can be solved in 
a given time T?  (again assume 1 sec per operation)

• sample computations:
• 1 hour = 3600 sec

that's enough time for 3600/(1 x 10-6) = 3.6 x 109 operations
• n2 algorithm:

n2 = 3.6 x 109  n = (3.6 x 109)1/2 = 60,000
• 2n algorithm:

2n = 3.6 x 109  n = log2(3.6 x 109) ~= 31

time available (T)time
function 1 year1 week1 hour1 min

3.1 x 10136.0 x 10113.6 x 10960,000,000n
5,615,692777,68860,0007745n2

5002278135n5

443931252n
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Linked Lists

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

...725231 ...725231item

Representing a Sequence of Data

• Sequence – an ordered collection of items (position matters)

• we will look at several types: lists, stacks, and queues

• Most common representation = an array

• Advantages of using an array:

• easy and efficient access to any item in the sequence
• items[i] gives you the item at position i in O(1) time
• known as random access

• very compact (but can waste space if positions are empty)

• Disadvantages of using an array:

• have to specify an initial array size and resize it as needed

• inserting/deleting items can require shifting other items
• ex: insert 63 between 52 and 72

items
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Alternative Representation: A Linked List

• A linked list stores a sequence of items in separate nodes.

• Each node is an object that contains: 
• a single item
• a "link" (i.e., a reference) to 

the node containing the next item

• The last node in the linked list has a link value of null.

• The linked list as a whole is represented by a variable that 
holds a reference to the first node. 

• e.g., items in the example above

31 52 72

null

items

31

Arrays vs. Linked Lists in Memory

• In an array, the elements occupy consecutive memory locations:

• In a linked list, the nodes are distinct objects.  

• do not have to be next to each other in memory

• that's why we need the links to get from one node to the next!

31

...725231items

...7252310x100items

0x100 0x104 0x108

52 72

null
items

31

0x812

52

0x208

72

null
0x520items

0x520 0x812 0x208
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Linked Lists in Memory

• Here's how the above linked list might actually look in memory:

31 52 72

null
items

0x5200x200

0x204

720x208

null0x212

0x216

……

310x520

0x8120x524

0x528

……

520x812

0x2080x816

0x520 0x812 0x208
0x200

the variable items

the last node

the first node

the second node

Features of Linked Lists

• They can grow without limit (provided there is enough memory).

• Easy to insert/delete an item – no need to "shift over" other items. 

• for example, to insert 63 between 52 and 72:

• Disadvantages: 
• they don't provide random access

• need to "walk down" the list to access an item
• the links take up additional memory

31 52 72

null

31 52 72

null

63

items

items

before:

after:
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A String as a Linked List of Characters

• Each node represents one character. 

• Java class for this type of node:
public class StringNode {

private char ch;
private StringNode next;

public StringNode(char c, StringNode n) {
this.ch = c;
this.next = n;

}
...

}

• The string as a whole is represented by a variable that holds 
a reference to the node for the first character (e.g., str1 above).

'c' 'a' 't'

null
str1

'c'

same type as the node itself!

ch

next

A String as a Linked List (cont.)

• An empty string will be represented by a null value.
example:

StringNode str2 = null;

• We will use static methods that take the string as a parameter.

• e.g., we'll write length(str1) instead of  str1.length()

• outside the class, call the methods using the class name:

StringNode.length(str1)

• This approach allows the methods to handle empty strings.

• if str1 == null: 

• length(str1) will work

• str1.length() will throw a NullPointerException
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Building a Linked List of Characters I

• We can use the StringNode constructor to build the linked list
from the previous slide.

• One way is to start with the last node and work towards the front:

StringNode str1 = new StringNode('t', null);

't'

null
str1

public StringNode(char c, 
StringNode n) {

this.ch = c;
this.next = n;

}

Building a Linked List of Characters II

• We can use the StringNode constructor to build the linked list
from the previous slide.

• One way is to start with the last node and work towards the front:

StringNode str1 = new StringNode('t', null);
str1 = new StringNode('a', str1);

't'

null
str1

public StringNode(char c, 
StringNode n) {

this.ch = c;
this.next = n;

}

'a'

'a'

this

c

n
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Building a Linked List of Characters III

• We can use the StringNode constructor to build the linked list
from the previous slide.

• One way is to start with the last node and work towards the front:

StringNode str1 = new StringNode('t', null);
str1 = new StringNode('a', str1);

'a' 't'

null
str1

public StringNode(char c, 
StringNode n) {

this.ch = c;
this.next = n;

}

Building a Linked List of Characters IV

• We can use the StringNode constructor to build the linked list
from the previous slide.

• One way is to start with the last node and work towards the front:

StringNode str1 = new StringNode('t', null);
str1 = new StringNode('a', str1);
str1 = new StringNode('c', str1);     

• Later, we'll see methods that can be used to build a linked list 
and add nodes to it.

public StringNode(char c, 
StringNode n) {

this.ch = c;
this.next = n;

}

'c' 'a' 't'

null
str1
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Review of Variables

• A variable or variable expression represents both: 
• a "box" or location in memory (the address of the variable)
• the contents of that "box" (the value of the variable)

• Practice:

StringNode str;   // points to the first node
StringNode temp;  // points to the second node

'd' 'o' 'g'

null

str
0x520 0x812 0x2080x200

temp

0x204
ch

next

valueaddressexpression

0x520 (ref to the 'd' node)0x200str

str.ch

str.next

Assumptions:
• ch field has the same

memory address as
the node itself.

• next field comes
2 bytes after the start
of the node. 

More Complicated Expressions

• Example:  temp.next.ch

• Start with the beginning of the expression: temp.next
It represents the next field of the node to which temp refers.

• address = 
• value = 

• Next, consider temp.next.ch
It represents the ch field of the node to which temp.next refers.

• address =
• value =

‘d’‘d’ ‘o’‘o’

null

‘g’

null

‘g’str
0x520 0x812 0x2080x200

temp

0x204
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What are the address and value of str.next.next?

• str.next is…

• thus, str.next.next is…

‘d’‘d’ ‘o’‘o’

null

‘g’

null

‘g’str
0x520 0x812 0x2080x200

temp

0x204

What expression using t would give us 'e'?
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What expression using t would give us 'e'?

Working backwards…

• I know that I need the ch field in the 'e' node

• Where do I have a reference to the 'e' node?

• What expression can I use for the box containing that reference?

Review of Assignment Statements

• An assignment of the form 

var1 = var2;

• takes the value inside var2

• copies it into var1

• Example involving integers: 

int x = 5;

int y = x;
5

• Example involving references: 

int[] a1 = {3, 4, 5};

int[] a2 = a1;
0x320

5x

0x400

5y

0x804

543a1

0x600

a2

0x256

0x320
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1) str.next = temp.next;

2) temp.next = temp.next.next;

What About These Assignments?
• Identify the two boxes.
• Determine the value in the box 

specified by the right-hand side.
• Copy that value into the box

specified by the left-hand side.

'd'

Writing an Appropriate Assignment

• If temp didn't already refer to the 'o' node, what assignment 
would be needed to make it refer to that node?

• start by asking: where do I currently have a reference
to the 'o' node?

• then ask: what expression can I use for that box?

• then write the assignment:

'o' 'g'

null

str
0x520 0x812 0x2080x200

temp

0x204
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A Linked List Is a Recursive Data Structure!

• Recursive definition: a linked list is either
a)  empty or
b)  a single node, followed by a linked list

• Viewing linked lists in this way allows us to write recursive 
methods that operate on linked lists.

Recursively Finding the Length of a String
• For a Java String object:

public static int length(String str) {
if (str.equals("")) {

return 0;
} else {

int lenRest = length(str.substring(1));
return 1 + lenRest;

}
}

• For a linked-list string:

public static int length(StringNode str) {
if (str == null) {

return 0;
} else {

int lenRest = length(str.next);
return 1 + lenRest;

}
}
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An Alternative Version of the Method

• Original version:
public static int length(StringNode str) {

if (str == null) {
return 0;

} else {
int lenRest = length(str.next);
return 1 + lenRest;

}
}

• Version without a variable for the result of the recursive call:
public static int length(StringNode str) {

if (str == null) {
return 0;

} else {
return 1 + length(str.next);

}
}

Tracing length()
public static int length(StringNode str) {

if (str == null) {
return 0;

} else {
return 1 + length(str.next);

}
}

• Example:  StringNode.length(str1)

str:null

str:0x404
"t"

str:0x720
"at"

str:0x128
"cat"

str:0x404
"t"

str:0x720
"at"

str:0x128
"cat"

str:0x720
"at"

str:0x128
"cat"

str:0x128
"cat"

str:0x404

str:0x720
"at"

str:0x128
"cat"

str:0x720

str:0x128
"cat"

str:0x128

return  0;

return 1+0

return 1+1

return 1+2
time
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Using Iteration to Traverse a Linked List

• Many tasks require us to traverse or "walk down" a linked list.

• We just saw a method that used recursion to do this.

• It can also be done using iteration (for loops, while loops, etc.).

• We make use of a variable (call it trav) that keeps track of 
where we are in the linked list.  

• Template for traversing an entire linked list:
StringNode trav = str;    // start with first node
while (trav != null) {

// process the current node here
trav = trav.next;     // move trav to next node

}

‘w’‘w’ ‘a’‘a’ ‘l’‘l’
str

trav

null

‘k’

null

‘k’

Example of Iterative Traversal

• toUpperCase(str): converting str to all upper-case letters

• Similar to the built-in method for Java String objects.

• This method processes linked-list strings:

• uses a loop to process one StringNode at a time

• modifies the internals of the string (unlike the built-in version)

• thus, it doesn't need to return anything

‘f’‘f’ ‘i’‘i’ ‘n’‘n’
str

null

‘e’

null

‘e’

‘F’‘F’ ‘I’‘I’ ‘N’‘N’
str

null

‘E’

null

‘E’
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Example of Iterative Traversal (cont.)

• toUpperCase(str): converting str to all upper-case letters

• Here's the method:

public static void toUpperCase(StringNode str) {        
StringNode trav = str; 
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch); 
trav = trav.next;

}
}

• uses a built-in static method from the Character class 
to convert a single char to upper case

‘f’‘f’ ‘i’‘i’ ‘n’‘n’
str

null

‘e’

null

‘e’

‘F’‘F’ ‘I’‘I’ ‘N’‘N’
str

null

‘E’

null

‘E’

Tracing toUpperCase(): Before the Loop

Calling StringNode.toUpperCase(str) adds a stack frame to the stack:

StringNode trav = str;

str

str

trav

'f' 'i' 'n'str 'e'

null

'f' 'i' 'n' 'e'

null

str

str

trav

'f' 'i' 'n' 'e'

null
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Tracing toUpperCase(): First Iteration of Loop
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch); 
trav = trav.next;

}

after updating trav.ch:

after updating trav:

str

str

trav

'f' 'i' 'n' 'e'

null

'F'

str

str

trav

'f' 'i' 'n' 'e'

null

'F'

Tracing toUpperCase(): Second Iteration
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch); 
trav = trav.next;

}

after updating trav.ch:

after updating trav:

str

str

trav

'F' 'i' 'n' 'e'

null

'I'

str

str

trav

'F' 'I' 'n' 'e'

null
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Tracing toUpperCase(): Third Iteration
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch); 
trav = trav.next;

}

after updating trav.ch:

after updating trav:

str

str

trav

'F' 'I' 'N' 'e'

null

str

str

trav

'F' 'I' 'n' 'e'

null

'N'

Tracing toUpperCase(): Fourth Iteration
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch); 
trav = trav.next;

}

after updating trav.ch:

after updating trav:

str

str

trav

'F' 'I' 'N' 'E'

null

str

str

trav

'F' 'I' 'N' 'e'

null

'E'

null
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Tracing toUpperCase(): Finishing Up
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch); 
trav = trav.next;

}

results of the final iteration:

and now trav == null, so we end the loop and return:

str

str

trav

'F' 'I' 'N' 'e'

null

str 'F' 'I' 'N' 'E'

null

'E'

null

Getting the Node at Position i in a Linked List

• getNode(str, i) – should return a reference to the ith node 
in the linked list to which str refers

• Examples:

• getNode(str, 0) should return a ref. to the 'f' node

• getNode(str, 3) should return a ref. to the 'e' node

• getNode(str.next, 2) should return a ref. to…?

• More generally, when 0 < i < length of list,
getNode(str, i) is equivalent to getNode(str.next, i-1)

'f' 'i' 'n'
str

'e'

null
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Getting the Node at Position i in a Linked List

• Recursive approach to getNode(str, i):

• if i == 0, return str (base case)

• else call getNode(str.next, i-1) and return what it returns!

• other base case?  

• Here's the method:

private static StringNode getNode(StringNode str, int i) {
if (i < 0 || str == null) { // base case 1: no node i

return null;
} else if (i == 0) {        // base case 2: just found

return str;
} else {

return getNode(str.next, i-1);
}

}

'f' 'i' 'n'
str

'e'

null

Deleting the Item at Position i

• Special case: i == 0 (deleting the first item)

• Update our reference to the first node by doing:
str = str.next;

'j' 'a'str 'v'x 'a'

null
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Deleting the Item at Position i (cont.)

• General case: i > 0

1. Obtain a reference to the previous node:
StringNode prevNode = getNode(i - 1);

'j' 'a' 'v'

prevNode

(example for i == 1)

str 'a'

null

Deleting the Item at Position i (cont.)

• General case: i > 0

2. Update the references to remove the node

_____________ = __________________;

'j' 'a' 'v'

prevNode

(example for i == 1)

str

'j' 'a' 'v'

prevNode

str

'a'

null

'a'

null

before:

after:
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Inserting an Item at Position i

• Special case: i == 0 (insertion at the front of the list)

• Step 1: Create the new node. Fill in the blanks!

StringNode newNode = new StringNode(_______, _______);

'a' 'c'str 'e'

null

'f'ch
before:

'a' 'c'str 'e'

null

newNode

'f'
'f'ch

after:

Inserting an Item at Position i (cont.)

• Special case: i == 0 (continued)

• Step 2: Insert the new node. Write the assignment!

'a' 'c'str 'e'

null

newNode

'f'ch

before (result of previous slide):

'a' 'c'str 'e'

null

newNode

'f'
'f'ch

after:

'f'
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Inserting an Item at Position i (cont.)

• General case: i > 0 (insert before the item currently in posn i)

StringNode prevNode = getNode(i - 1);

StringNode newNode = new StringNode(ch, ________________);

___________________________________ // one more line

before:

after (assume that i == 2): 'm'

'a' 'c'
str

'e'

null

'm'ch

prevNode

'a' 'c'
str

'e'

null

newNode

'm'ch

x

Returning a Reference to the First Node

• Both deleteChar() and insertChar() return a reference to 
the first node in the linked list.  For example:

public static StringNode deleteChar(StringNode str, int i) {
…
if (i == 0) {             // special case

str = str.next;
} else {                  // general case

StringNode prevNode = getNode(str, i-1);
if (prevNode != null && prevNode.next != null) {

prevNode.next = prevNode.next.next;
…

}

return str;
}

• Clients should call them as part of an assignment:  
s1 = StringNode.deleteChar(s1, 0);
s2 = StringNode.insertChar(s2, 0, 'h');

• If the first node changes, the client's variable will be updated
to point to the new first node.
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Creating a Copy of a Linked List

• copy(str) – create a copy of the entire list to which str refers

• Recursive approach:
• base case:  if str is empty, return null
• else: – make a recursive call to copy the rest of the linked list

– create and return a copy of the first node,
with its next field pointing to the copy of the rest

public static StringNode copy(StringNode str) {
if (str == null) {        // base case

return null;
}

// make a recursive call to copy the rest of the list
StringNode copyRest = copy(str.next);

// create and return a copy of the first node, 
// with its next field pointing to the copy of the rest
return new StringNode(str.ch, copyRest);

}

Tracing copy(): the initial call

• From a client:  StringNode s2 = StringNode.copy(s1);

s2

copyRest

str

'd' 'o' 'g'

nulls1

stack heap

public static StringNode copy(StringNode str) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

}
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Tracing copy(): the initial call

• From a client:  StringNode s2 = StringNode.copy(s1);

s2

copyRest

str

'd' 'o' 'g'

nulls1

public static StringNode copy(StringNode str) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

}

Tracing copy(): the initial call

• From a client:  StringNode s2 = StringNode.copy(s1);

s2

copyRest

str

'd' 'o' 'g'

nulls1

copyRest

str

public static StringNode copy(StringNode str) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

}
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Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}
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Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}
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Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

null

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

Tracing copy(): the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

null

copyRest

str

s1

heap

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}
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Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

nullcopyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

null 'g'

null
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Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

'g'

null

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

'g'

null

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

'o'
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Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

'g'

null

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

'o'

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

'o'

'g'

null

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,  

copyRest);
}

'd'
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Tracing copy(): returning from the base case

s2 'd' 'o' 'g'

null

'o'

'g'

null

s1

• From a client:  StringNode s2 = StringNode.copy(s1);

'd'

Tracing copy(): Final Result

• s2 now holds a reference to a linked list that is a copy of the 
linked list to which s1 holds a reference.

s2 'd' 'o' 'g'

null

'd'

'o'

'g'

null

s1
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Using a "Trailing Reference" During Traversal

• When traversing a linked list, one trav may not be enough.

• Ex: insert ch = 'n' at the right place in this sorted linked list:

• Traverse the list to find the right position:
StringNode trav = str;     
while (trav != null && trav.ch < ch) {

trav = trav.next;
}

• When we exit the loop, where will trav point?  Can we insert 'n'?

• The following changed version doesn't work either.  Why not?
while (trav != null && trav.next.ch < ch) {

trav = trav.next;
}

‘a’‘a’ ‘c’‘c’ ‘p’‘p’
str

trav

null

‘z’

null

‘z’

Using a "Trailing Reference" (cont.)

• To get around the problem seen on the previous page, 
we traverse the list using two different references:

• trav, which we use as before
• trail, which stays one node behind trav

StringNode trav = str;
StringNode trail = null;     
while (trav != null && trav.ch < ch) {

trail = trav;
trav = trav.next;

}
// if trail == null, insert at the front of the list
// else insert after the node to which trail refers

'a' 'c' 'p'
str

'z'

null

travnulltrail
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Using a "Trailing Reference" (cont.)

• To get around the problem seen on the previous page, 
we traverse the list using two different references:

• trav, which we use as before
• trail, which stays one node behind trav

StringNode trav = str;
StringNode trail = null;     
while (trav != null && trav.ch < ch) {

trail = trav;
trav = trav.next;

}
// if trail == null, insert at the front of the list
// else insert after the node to which trail refers

'a' 'c' 'p'
str

'z'

null

travtrail

Using a "Trailing Reference" (cont.)

• To get around the problem seen on the previous page, 
we traverse the list using two different references:

• trav, which we use as before
• trail, which stays one node behind trav

StringNode trav = str;
StringNode trail = null;     
while (trav != null && trav.ch < ch) {

trail = trav;
trav = trav.next;

}
// if trail == null, insert at the front of the list
// else insert after the node to which trail refers

'a' 'c' 'p'
str

'z'

null

travtrail
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Doubly Linked Lists

• In a doubly linked list, every node stores two references:

• next, which works the same as before

• prev, which holds a reference to the previous node
• in the first node, prev has a value of null

• The prev references allow us to "back up" as needed.

• remove the need for a trailing reference during traversal!

• Insertion and deletion must update both types of references.

Find the address and value of  s.next.next.ch

address value

A. 0xbe00 'r'

B. 0x3004 'e'

C. 0xbb00 'a'

D. none of these

Extra practice!

CSCI E-22 Harvard Extension School 125



Find the address and value of  s.next.next.ch

address value

A. 0xbe00 'r'

B. 0x3004 'e'

C. 0xbb00 'a'

D. none of these

• s.next is the next field in the node to which s refers

• it holds a reference to the 'r' node

• thus, s.next.next is the next field in the 'r' node

• it holds a reference to the 'e' node

• thus, s.next.next.ch is the ch field in the 'e' node

• it holds the 'e'!
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Lists, Stacks, and Queues

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Representing a Sequence: Arrays vs. Linked Lists

• Sequence – an ordered collection of items (position matters)

• we will look at several types: lists, stacks, and queues

• Can represent any sequence using an array or a linked list

linked listarray

nodes can be at arbitrary 
locations in memory; the links 
connect the nodes together

elements occupy consecutive 
memory locations

representation 
in memory

• can grow to an arbitrary length

• allocate nodes as needed

• inserting or deleting does not
require shifting items

• provide random access 
(access to any item in 
constant time)

• no extra memory needed for 
links

advantages

• no random access (may need 
to traverse the list)

• need extra memory for links

• have to preallocate the 
memory needed for the 
maximum sequence size 

• inserting or deleting can
require shifting items

disadvantages
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Abstract Data Types

• An abstract data type (ADT) is a model of a data structure 
that specifies: 

• the characteristics of the collection of data

• the operations that can be performed on the collection

• It’s abstract because it doesn’t specify how the ADT will be 
implemented.

• A given ADT can have multiple implementations.

The List ADT

• A list is a sequence in which items can be accessed, 
inserted, and removed at any position in the sequence.

• The operations supported by our List ADT:

• getItem(i): get the item at position i

• addItem(item, i): add the specified item at position i

• removeItem(i): remove the item at position i

• length(): get the number of items in the list

• isFull(): test if the list already has the maximum number 
of items

• Note that we don’t specify how the list will be implemented.
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Specifying an ADT Using an Interface

• In Java, we can use an interface to specify an ADT:

public interface List {
Object getItem(int i);
boolean addItem(Object item, int i);
Object removeItem(int i);
int length();
boolean isFull();

} 

• An interface specifies a set of methods.

• includes only their headers  

• does not typically include the full method definitions

• Like a class, it must go in a file with an appropriate name.

• in this case: List.java

• Methods specified in an interface must be public, 
so we don’t need the keyword public in the headers.

Implementing an ADT Using a Class

• To implement an ADT, we define a class.

• We specify the corresponding interface in the class header:

public class ArrayList implements List {
...

• tells the compiler that the class will define all of the methods 
in the interface

• if the class doesn't define them, it won't compile

• We'll look at two implementations of the List interface:

• ArrayList – uses an array to store the items

• LLList – uses a linked list to store the items
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Recall: Polymorphism

• An object can be used wherever an object of one of its 
superclasses is called for. 

• For example:

Animal a = new Dog();

Animal[] zoo = new Animal[100];
zoo[0] = new Ant();
zoo[1] = new Cat();

...

Another Example of Polymorphism

• An interface can be used as the type of a variable:

List myList;

• We can then assign an object of any class that implements 
the interface:

List l1 = new ArrayList(20);
List l2 = new LLList();

• This allows us write code that works with any implementation 
of an ADT:

public static void processList(List vals) {
for (int i = 0; i < vals.length(); i++) {

…

}

• vals can be an object of any class that implements List

• regardless of which class vals is from,
we know it has all of the methods in the List interface
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Implementing a List Using an Array
public class ArrayList implements List {

private Object[] items;
private int length; 

public ArrayList(int maxSize) {
// code to check for invalid maxSize goes here...
this.items = new Object[maxSize];
this.length = 0;

}

public int length() {
return this.length;

}

public boolean isFull() {
return (this.length == this.items.length);

}
...

}             

null …

"if"

"for"

list

a variable of type
ArrayList an ArrayList object

items

length 2

Recall: The Implicit Parameter
public class ArrayList implements List {

private Object[] items;
private int length; 

public ArrayList(int maxSize) {
this.items = new Object[maxSize];
this.length = 0;

}

public int length() {
return this.length;

}

public boolean isFull() {
return (this.length == this.items.length);

}
...

} 

• All non-static methods have an implicit parameter (this)
that refers to the called object.

• In most cases, we're allowed to omit it!
• we'll do so in the remaining notes
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Omitting The Implicit Parameter
public class ArrayList implements List {

private Object[] items;
private int length; 

public ArrayList(int maxSize) {
items = new Object[maxSize];
length = 0;

}

public int length() {
return length;

}

public boolean isFull() {
return (length == items.length);

}
...

} 

• In a non-static method, if we use a variable that
• isn't declared in the method
• has the name of one of the fields

Java assumes that we're using the field.

Adding an Item to an ArrayList
• Adding at position i (shifting items i, i+1, … to the right by one):

public boolean addItem(Object item, int i) {
if (item == null || i < 0 || i > length) {

throw new IllegalArgumentException();
} else if (isFull()) {

return false;
}

// make room for the new item
for (int j = length - 1; j >= i; j--) {

items[j + 1] = items[j];
}

items[i] = item;
length++;
return true;

}

30 1 2

items

length 6

74 5 6 8
example for i = 3:
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Adding an Item to an ArrayList
• Adding at position i (shifting items i, i+1, … to the right by one):

public boolean addItem(Object item, int i) {
if (item == null || i < 0 || i > length) {

throw new IllegalArgumentException();
} else if (isFull()) {

return false;
}

// make room for the new item
for (int j = length - 1; j >= i; j--) {

items[j + 1] = items[j];
}

items[i] = item;
length++;
return true;

}

30 1 2

items

length 7

74 5 6 8
example for i = 3:

Removing an Item from an ArrayList
• Removing item i (shifting items i+1, i+2, … to the left by one):

public Object removeItem(int i) {
if (i < 0 || i >= length) {

throw new IndexOutOfBoundsException();
}
Object removed = items[i];

// shift items after items[i] to the left
for (int j = i; j < length - 1; j++) {

____________________________;      
} 
items[length - 1] = null;

length--;
return removed;

}

items

length 5

3

nullnullnullnull

0 1 2 74 5 6 8

"Dave"

"Kylie"

example for i = 1:

removed

"Cody" "Ash"
"Libby"
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Getting an Item from an ArrayList
• Getting item i (without removing it):

public Object getItem(int i) {
if (i < 0 || i >= length) {

throw new IndexOutOfBoundsException();
}
return items[i];          

}

toString() Method for the ArrayList Class
public String toString() {

String str = "{";

if (length > 0) {
for (int i = 0; i < length - 1; i++) {

str = str + items[i] + ", ";
}
str = str + items[length - 1];

}

str = str + "}";

return str;
}

• Produces a string of the following form:
{items[0], items[1], … }

• Why is the last item added outside the loop?

• Why do we need the if statement?
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list

Implementing a List Using a Linked List
public class LLList implements List {

private Node head;    
private int length; 
...            

}

• Differences from the linked lists we used for strings:

• we "embed" the linked list inside another class
• users of our LLList class won't actually touch the nodes

• we use non-static methods instead of static ones
myList.length() instead of length(myList)

• we use a special dummy head node as the first node

variable of type
LLList LLList object

length 3

head
null "how" "are" "you"

null

Node objects

dummy head node

Using a Dummy Head Node

• The dummy head node is always at the front of the linked list.

• like the other nodes in the linked list, it’s of type Node

• it does not store an item

• it does not count towards the length of the list

• Using it allows us to avoid special cases when adding and 
removing nodes from the linked list.

• An empty LLList still has a dummy head node:

length 0

head

LLList object

length 3

head
null "how" "are" "you"

null

dummy head node

null

null
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An Inner Class for the Nodes
public class LLList implements List {

private class Node {
private Object item;
private Node next;

private Node(Object i, Node n) {
item = i;
next = n;

}
}
...

}  

• We make Node an inner class, defining it within LLList. 
• allows the LLList methods to directly access Node’s private 

fields, while restricting access from outside LLList
• the compiler creates this class file:  LLList$Node.class

• For simplicity, our diagrams may show the items inside the nodes.

instead of 

"hi"

next

item

"hi" "hi"

Node object
private

since only 
LLList

will use it

Other Details of Our LLList Class
public class LLList implements List {

private class Node {
// see previous slide

}

private Node head; 
private int length;

public LLList() {
head = new Node(null, null);
length = 0;

}

public boolean isFull() {
return false;

}
...

}

• Unlike ArrayList, there’s no need to preallocate space for the 
items.  The constructor simply creates the dummy head node.

• The linked list can grow indefinitely, so the list is never full!
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Getting a Node

• Private helper method for getting node i
• to get the dummy head node, use i = -1

private Node getNode(int i) {
// private method, so we assume i is valid!

Node trav = ;
int travIndex = -1;

while ( ) {
travIndex++;

;
}

return trav;   
}

length 3

head
null "how" "are" "you"

nullnext

item

LLList object Node objects

example for i = 1: 0 1 2-1

trav -1travIndex

Getting an Item
public Object getItem(int i) {

if (i < 0 || i >= length) {
throw new IndexOutOfBoundsException();

}

Node n = getNode(i);

return ________;   
}

length 3

head
null "how" "are" "you"

null

0 1 2-1

next

item

LLList object Node objects

example for i = 1:
n
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Adding an Item to an LLList
public boolean addItem(Object item, int i) {

if (item == null || i < 0 || i > length) {
throw new IllegalArgumentException();

}
Node newNode = new Node(item, null);
Node prevNode = getNode(i - 1);           
newNode.next = prevNode.next;
prevNode.next = newNode;

length++;
return true;

}

• This works even when adding at the front of the list (i = 0):

length 3

head
null "how" "are"

next

item "you"

null

prevNode

newNode

"hi!"

null

x

0 1 2-1

4

addItem() Without a Dummy Head Node
public boolean addItem(Object item, int i) {

if (item == null || i < 0 || i > length) {
throw new IllegalArgumentException();

}
Node newNode = new Node(item, null);

if (i == 0) {                // case 1: add to front
newNode.next = head;        
head = newNode;

} else {                     // case 2: i > 0
Node prevNode = getNode(i - 1);           
newNode.next = prevNode.next;
prevNode.next = newNode;

}

length++;
return true;

}

(the gray code shows what we would need to add if we didn't have a dummy head node)
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Removing an Item from an LLList

length 3

head
null

next

item

null

prevNode

x

0 1 2-1

"how" "are" "you"removed

public Object removeItem(int i) {
if (i < 0 || i >= length) {

throw new IndexOutOfBoundsException();
}
Node prevNode = getNode(i - 1);           
Object removed = prevNode.next.item;

// what line goes here?

length--;
return removed;

}

• This works even when removing the first item (i = 0):

toString() Method for the LLList Class
public String toString() {

String str = "{";

// what should go here?

str = str + "}";

return str;
}
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best:

worst:

average:

Efficiency of the List ADT Implementations

best:
worst:

average:

only one case:getItem()

best: 

worst:

average:

addItem()

LLListArrayList

n = number of items in the list

LLList object

length 99

head
null "hey" "are"

null

"how"

…

last

mylist.addItem("you", 99)

Example of Using a Reference to the Last Node

• before the call is made:

length 99

head
null "hey" "are" "you"

null

"how"

…

last

• use last to add the new item's node to the end of the linked list:
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LLList object

length 100

head
null "hey" "are" "you"

null

"how"

…

last

mylist.addItem("you", 99)

Example of Using a Reference to the Last Node (cont.)

• after the call is made:

best: 

worst:

average:

best:

worst:

average:

Efficiency of the List ADT Implementations (cont.)

space 
efficiency

removeItem()

LLListArrayList

n = number of items in the list
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LLList object

length 100

head
null "hey" "are" "you"

null

"how"

…

last

beforeLast

mylist.removeItem(99)

A Reference to the Second-to-Last Node Doesn't Help

• before the call is made:

length 99

head
null "hey" "are"

null

"you"

null

"how"

…

last

beforeLast

• we can use beforeLast to remove the last node and update last:

length 99

head
null "hey" "are"

null

"how"

…

last

beforeLast

LLList object

A Reference to the Second-to-Last Node Doesn't Help

• but in order to update beforeLast, we need to walk down the linked list!

mylist.removeItem(99)
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Counting the Number of Occurrences of an Item
public class MyClass {  

public static int numOccur(List l, Object item) {
int numOccur = 0;
for (int i = 0; i < l.length(); i++) {

Object itemAt = l.getItem(i);
if (itemAt.equals(item)) {

numOccur++;
}

}
return numOccur;

} ...

• This method works fine if we pass in an ArrayList object.

• time efficiency (as a function of the length, n) = ?

• However, it's not efficient if we pass in an LLList.

• each call to getItem() calls getNode()
• to access item 0, getNode() accesses 2 nodes (dummy + node 0)

• to access item 1, getNode() accesses 3 nodes
• to access item i, getNode() accesses  i+2 nodes
• 2 + 3 + … + (n+1) = ?

Solution: Provide an Iterator
public class MyClass { 

public static int numOccur(List l, Object item) {
int numOccur = 0;
ListIterator iter = l.iterator();
while (iter.hasNext()) {

Object itemAt = iter.next();
if (itemAt.equals(item)) {

numOccur++;
}

}
return numOccur;

} ...

• We add an iterator() method to the List interface.

• it returns a separate iterator object that can efficiently 
iterate over the items in the list

• The iterator has two key methods:

• hasNext(): tells us if there are items we haven't seen yet

• next(): returns the next item and advances the iterator
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An Interface for List Iterators

• Here again, the interface only includes the method headers:
public interface ListIterator { // in ListIterator.java

boolean hasNext();
Object next();

}

• We can then implement this interface for each type of list:

• LLListIterator for an iterator that works with LLLists

• ArrayListIterator for an iterator for ArrayLists

• We use the interfaces when declaring variables in client code:

public class MyClass { 
public static int numOccur(List l, Object item) {

int numOccur = 0;
ListIterator iter = l.iterator();
...

• doing so allows the code to work for any type of list!

Using an Inner Class for the Iterator
public class LLList { 

private Node head;
private int length;

private class LLListIterator implements ListIterator {
private Node nextNode;  // points to node with the next item

public LLListIterator() {
nextNode = head.next;  // skip over dummy head node

}
...

}

public ListIterator iterator() {
return new LLListIterator();

}
...

• Using an inner class gives the iterator access to the list’s internals.

• The iterator() method is an LLList method.
• it creates an instance of the inner class and returns it
• its return type is the interface type

• so it will work in the context of client code
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Full LLListIterator Implementation
private class LLListIterator implements ListIterator {

private Node nextNode;     // points to node with the next item

public LLListIterator() {
nextNode = head.next;  // skip over the dummy head node  

}

public boolean hasNext() {
return (nextNode != null);

}

public Object next() {
// throw an exception if nextNode is null

Object item = _______________;

nextNode = _______________;

return item;
}

}

length 3

head
next

item

nextNode

LLList

object

LLListIterator object

null

null

"how" "are" "you"

Stack ADT

• A stack is a sequence in which:

• items can be added and removed only at one end (the top)

• you can only access the item that is currently at the top

• Operations: 

• push: add an item to the top of the stack

• pop: remove the item at the top of the stack

• peek: get the item at the top of the stack, but don’t remove it

• isEmpty: test if the stack is empty

• isFull: test if the stack is full

• Example: a stack of integers

15

7

start: 8

15

7

push 8:

15

7

pop:

7

pop:

3

7

push 3:
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A Stack Interface: First Version
public interface Stack {

boolean push(Object item);
Object pop();
Object peek();
boolean isEmpty();
boolean isFull();

}              

• push() returns false if the stack is full, and true otherwise.

• pop() and peek() take no arguments, because we know that 
we always access the item at the top of the stack.

• return null if the stack is empty.

• The interface provides no way to access/insert/delete an item 
at an arbitrary position.

• encapsulation allows us to ensure that our stacks are 
only manipulated in appropriate ways

public class ArrayStack implements Stack {
private Object[] items;
private int top;    // index of the top item 

public ArrayStack(int maxSize) {
// code to check for invalid maxSize goes here...
items = new Object[maxSize];
top = -1;

}
...     

• Example: the stack                

• Items are added from left to right (top item = the rightmost one).

• push() and pop() won't require any shifting!

s1

Implementing a Stack Using an Array: First Version

ArrayStack object

items

top

null

1

…

7

15

0 1 2

15

7

variable of type
ArrayStack
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public class ArrayStack implements Stack {
private Object[] items;
private int top;    // index of the top item
...     

} 

• So far, our collections have allowed us to add objects of any type.
ArrayStack s1 = new ArrayStack(4);
s1.push(7);    // 7 is turned into an Integer object for 7
s1.push("hi");
String item = s1.pop();           // won't compile
String item = (String)s1.pop();   // need a type cast

• We'd like to be able to limit a given collection to one type.
ArrayStack<String> s2 = new ArrayStack<String>(10);
s2.push(7);               // won't compile
s2.push("hello");
String item = s2.pop();   // no cast needed!

items

top
s1

Collection Classes and Data Types

null

1

null

7 "hi"

0 1 2 3

Limiting a Stack to Objects of a Given Type

• We can do this by using a generic interface and class.

• Here's a generic version of our Stack interface:
public interface Stack<T> {

boolean push(T item);
T pop();
T peek();
boolean isEmpty();
boolean isFull();

}             

• It includes a type variable T in its header and body.

• used as a placeholder for the actual type of the items
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A Generic ArrayStack Class
public class ArrayStack<T> implements Stack<T> {

private T[] items;
private int top;    // index of the top item 
…
public boolean push(T item) {

…
}
… 

}

• Once again, a type variable  T is used as a placeholder for the 
actual type of the items.

• When we create an ArrayStack, we specify the type of items 
that we intend to store in the stack:

ArrayStack<String> s1 = new ArrayStack<String>(10);
ArrayStack<Integer> s2 = new ArrayStack<Integer>(25);

• We can still allow for a mixed-type collection:
ArrayStack<Object> s3 = new ArrayStack<Object>(20);

ArrayStack<String> s1 = 
new ArrayStack<String>(10);

ArrayStack<Integer> s2 = 
new ArrayStack<Integer>(25);

Using a Generic Class

public class ArrayStack<T> ... {
private T[] items;
private int top; 
...
public boolean push(T item) {

...

public class ArrayStack<String> {
private String[] items;
private int top; 
...
public boolean push(String item) {

...

public class ArrayStack<Integer> {
private Integer[] items;
private int top; 
...
public boolean push(Integer item) {

...
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ArrayStack Constructor

• Java doesn’t allow you to create an object or array using 
a type variable.  Thus, we cannot do this:

public ArrayStack(int maxSize) {
// code to check for invalid maxSize goes here...
items = new T[maxSize];   // not allowed
top = -1;

}

• Instead, we do this:
public ArrayStack(int maxSize) {

// code to check for invalid maxSize goes here...
items = (T[])new Object[maxSize];
top = -1;

}

• The cast generates a compile-time warning, but we’ll ignore it.

• Java’s built-in ArrayList class takes this same approach.

Testing if an ArrayStack is Empty or Full

• Empty stack:

public boolean isEmpty() {
return (top == -1);

}

• Full stack: 

public boolean isFull() {
return (top == items.length - 1);

}

0 1 2

items

top -1

3 4 5 6 7 8

0 1 2

items

top 8

3 4 5 6 7 8
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Pushing an Item onto an ArrayStack

public boolean push(T item) {
// code to check for a null item goes here
if (isFull()) {

return false;
}
top++;
items[top] = item;
return true;

}

items

top 4

0 1 2 3 4 5 6 7 8

ArrayStack pop() and peek()

public T pop() {
if (isEmpty()) {

return null;
}

______ removed = items[top];
items[top] = null;
top--;
return removed;

}

• peek just returns items[top] without decrementing top.

removed

nullnullnullnull

10 5 9 13

items

top 3

0 1 2 3 4 5 6 7
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Implementing a Generic Stack Using a Linked List
public class LLStack<T> implements Stack<T> {

private Node top;    // top of the stack
…           

}

• Example: the stack                

• Things worth noting:

• our LLStack class needs only a single field:
a reference to the first node, which holds the top item

• top item = leftmost item (vs. rightmost item in ArrayStack)

• we don’t need a dummy node
• only one case: always insert/delete at the front of the list!

variable of type
LLStack

LLStack object

s2
top

null

Node objects

7

15

7
15

Other Details of Our LLStack Class
public class LLStack<T> implements Stack<T> {

private class Node {
private T item;
private Node next;
...

}

private Node top; 

public LLStack() {
top = null;

}
public boolean isEmpty() {

return (top == null);
}
public boolean isFull() {

return false;
}

}

• The inner Node class uses the type parameter T for the item.

• We don’t need to preallocate any memory for the items. 

• The stack is never full!
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LLStack push()

public boolean push(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, top);
top = newNode;
return true;

}

null

newNode

15 7

8item

top

LLStack push()

public boolean push(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, top);
top = newNode;
return true;

}

null

newNode

15 7

8item

top x
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LLStack pop() and peek()

public T pop() {
if (isEmpty()) {

return null;
}

T removed = _______________;

____________________________;
return removed;

}

public T peek() {
if (isEmpty()) {

return null;
}
return top.item;

}

top
null

removed 15 7

x

Efficiency of the Stack Implementations

LLStackArrayStack

O(1)O(1)push()

O(1)O(1)pop()

O(1)O(1)peek()

O(n) where n is the number of 
items currently on the stack

O(m) where m is the 
anticipated maximum number 
of items

space 
efficiency
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Applications of Stacks

• Converting a recursive algorithm to an iterative one 

• use a stack to emulate the runtime stack

• Making sure that delimiters (parens, brackets, etc.) are balanced:

• push open (i.e., left) delimiters onto a stack

• when you encounter a close (i.e., right) delimiter, 
pop an item off the stack and see if it matches

• example:
5 * [3 + {(5 + 16 – 2)]

• Evaluating arithmetic expressions

[

push [

{

[

push { (

{

[

push (

{

[

), so 
pop.

get (,
which

matches
[

], so 
pop.

get {,
which

doesn’t
match

Queue ADT

• A queue is a sequence in which: 

• items are added at the rear and removed from the front
• first in, first out (FIFO)  (vs. a stack, which is last in, first out)

• you can only access the item that is currently at the front

• Operations: 

• insert: add an item at the rear of the queue

• remove: remove the item at the front of the queue

• peek: get the item at the front of the queue, but don’t remove it

• isEmpty: test if the queue is empty

• isFull: test if the queue is full

• Example: a queue of integers
start:   12 8 

insert 5:    12 8 5

remove:    8 5   
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Our Generic Queue Interface
public interface Queue<T> {

boolean insert(T item);
T remove();
T peek();
boolean isEmpty();
boolean isFull();

} 

• insert() returns false if the queue is full, and true otherwise.

• remove() and peek() take no arguments, because 
we always access the item at the front of the queue.

• return null if the queue is empty.

• Here again, we will use encapsulation to ensure that the 
data structure is manipulated only in valid ways.

Implementing a Queue Using an Array
public class ArrayQueue<T> implements Queue<T> {

private T[] items;
private int front;
private int rear;
private int numItems; 

...     
}

• Example:

• We maintain two indices:

• front:  the index of the item at the front of the queue

• rear:  the index of the item at the rear of the queue

73

0 1 2 3

5125

ArrayQueue object

items

front 1

3

3

rear

numItems

variable of type
ArrayQueue

queue
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Avoiding the Need to Shift Items

• Problem: what do we do when we reach the end of the array?
example: a queue of integers:

the same queue after removing two items and inserting two:

we have room for more items, but shifting to make room is inefficient

• Solution: maintain a circular queue.  When we reach the end of 
the array, we wrap around to the beginning.

insert 5: wrap around!

65891721454

front rear

814365891721

front

8143658917215

frontrear

rear

Maintaining a Circular Queue

• We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;

rear = (rear + 1) % items.length; 

• Example:
43891721

front rear

q
items

front 1

4

4

rear

numItems
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Maintaining a Circular Queue

• We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;

rear = (rear + 1) % items.length; 

• Example:

• q.insert(81):   // rear is not at end of array

• rear = (rear + 1) % items.length;
= (  4  + 1) %      6
=         5  %      6  = 5 (% has no effect)

8143891721

front rear

q
items

front 1

5

5

rear

numItems

Maintaining a Circular Queue

• We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;

rear = (rear + 1) % items.length; 

• Example:

• q.insert(81):   // rear is not at end of array

• rear = (rear + 1) % items.length;
= (  4  + 1) %      6
=         5  %      6  = 5 (% has no effect)

• q.insert(33):   // rear is at end of array

• rear = (rear + 1) % items.length;
= (  5  + 1) %      6
=         6  %      6  = 0 wrap around!

814389172133

frontrear

q
items

front 1

0

6

rear

numItems

CSCI E-22 Harvard Extension School 157



Inserting an Item in an ArrayQueue

front rear

before:

after:
front rear

• We increment rear before adding the item:

public boolean insert(T item) {
// code to check for a null item goes here
if (isFull()) {

return false;
}
rear = (rear + 1) % items.length;
items[rear] = item;
numItems++;
return true;

}

null

ArrayQueue remove()

public T remove() {
if (isEmpty()) {

return null;
}
T removed = _________________;

numItems--;
return removed;

}

front rear

before:

after:

front rear

10 5 9 13

10 5 9 13removed
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Constructor
public ArrayQueue(int maxSize) {

// code to check for an invalid maxSize goes here...
items = (T[])new Object[maxSize];
front = 0;
rear = -1;
numItems = 0;

}

• When we insert the first item in a newly created ArrayQueue,
we want it to go in position 0. Thus, we need to:

• start rear at -1, since then it will be incremented to 0
and used to perform the insertion

• start front at 0, since it is not changed by the insertion

0 1

items

front 0

-1

0

rear

numItems

null null …

0 1

items

front 0

0

1

rear

numItems "hi"

null …

Testing if an ArrayQueue is Empty or Full

• In both empty and full queues, rear is one "behind" front:

• This is why we maintain numItems!

public boolean isEmpty() {
return (numItems == 0);

}

public boolean isFull() {
return (numItems == items.length);

}

frontrear

frontrear

4365891721365

frontrear

initial configuration:

after two insertions and 
two removals:

after 7 more insertions:
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Implementing a Queue Using a Linked List
public class LLQueue<T> implements Queue<T> {

private Node front;    // front of the queue
private Node rear;     // rear of the queue
…           

}

• Example:

• In a linked list, we can efficiently:

• remove the item at the front

• add an item to the rear (if we have a ref. to the last node)

• Thus, this implementation is simpler than the array-based one!

variable of type
LLQueue LLQueue object

rear
queue

front
next

item

null

Node objects

"hi" "how" "are" "you"

Other Details of Our LLQueue Class
public class LLQueue<T> implements Queue<T> {

private class Node {
private T item;
private Node next;
...

}

private Node front;
private Node rear; 

public LLQueue() {
front = null;
rear = null;

}
public boolean isEmpty() {

return (front == null);
}
public boolean isFull() {

return false;
}
…

}
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Inserting an Item in an Empty LLQueue

public boolean insert(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, null);
if (isEmpty()) {

front = newNode;  
rear = newNode;

} else {
// we'll add this later!

}
return true;

}

rear

front

newNode
null

"now"item

null

null

The next field in the newNode
will be null regardless of whether
the queue is empty.  Why?

public boolean insert(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, null);
if (isEmpty()) {

front = newNode;  
rear = newNode;

} else {

}
return true;

}

Inserting an Item in a Non-Empty LLQueue

rear

front

newNode

"now"

item

null

null

"hi" "how" "are" "you"

x

A. rear = newNode;
rear.next = newNode;

B. rear.next = newNode;
rear = newNode;

C. either A or B

D. neither A nor B
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Removing from an LLQueue with One Item

public T remove() {
if (isEmpty()) {

return null;
}

T removed = _________________;
if (front == rear) {     // removing the only item

front = null;
rear = null;

} else {
// we'll add this later

}

return removed;
}

rear

front
null

"hi"removed

Removing from an LLQueue with Two or More Items

public T remove() {
if (isEmpty()) {

return null;
}

T removed = _________________;
if (front == rear) {     // removing the only item

front = null;    
rear = null;          

} else {

}

return removed;
}

rear

front

null

"hi" "how" "are" "you"removed

x
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Efficiency of the Queue Implementations

LLQueueArrayQueue

O(1)O(1)insert()

O(1)O(1)remove()

O(1)O(1)peek()

O(n) where n is the number of 
items currently in the queue

O(m) where m is the 
anticipated maximum number 
of items

space 
efficiency

Applications of Queues

• first-in first-out (FIFO) inventory control

• OS scheduling: processes, print jobs, packets, etc.

• simulations of banks, supermarkets, airports, etc.
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Binary Trees and Huffman Encoding

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Motivation: Implementing a Dictionary

• A data dictionary is a collection of data with two main operations:
• search for an item (and possibly delete it)
• insert a new item

• If we use a sorted list to implement it, efficiency = O(n).

• In the next few lectures, we’ll look at how we can use a tree
for a data dictionary, and we'll try to get better efficiency.

• We’ll also look at other applications of trees.

inserting an itemsearching for an itemdata structure

O(n) 
because we need to shift 
items over

O(log n) 
using binary search

a list implemented using 
an array

O(n)

(O(1) to do the actual 
insertion, but O(n) to find 
where it belongs)

O(n)
using linear search 

(binary search in a linked 
list is O(n log n))

a list implemented using 
a linked list
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What Is a Tree?

• A tree consists of: 
• a set of nodes
• a set of edges, each of which connects a pair of nodes

• Each node may have one or more data items.
• each data item consists of one or more fields
• key field = the field used when searching for a data item
• data items with the same key are referred to as duplicates

• The node at the "top" of the tree is called the root of the tree.

root

node

edge

• If a node N is connected to nodes directly below it in the tree:

• N is referred to as their parent

• they are referred to as its children. 

• example: node 5 is the parent of nodes 10, 11, and 12

• Each node is the child of at most one parent.

• Nodes with the same parent are siblings.

Relationships Between Nodes
1

2 3 4 6

7 8 9

5

10 11 12

CSCI E-22 Harvard Extension School 165



• A node’s ancestors are its parent, its parent’s parent, etc.

• example: node 9’s ancestors are 3 and 1

• A node’s descendants are its children, their children, etc.

• example: node 1’s descendants are all of the other nodes

Relationships Between Nodes (cont.)

1

2 3 4 5 6

7 8 9 10 11 12

Types of Nodes

• A leaf node is a node without children.

• An interior node is a node with one or more children.

1

2 3 4 5 6

7 8 9 10 11 12

13
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A Tree is a Recursive Data Structure

• Each node in the tree is the root of a smaller tree!
• refer to such trees as subtrees to distinguish them from 

the tree as a whole
• example: node 2 is the root of the subtree circled above
• example: node 6 is the root of a subtree with only one node

• We’ll see that tree algorithms often lend themselves to 
recursive implementations.

1

2 3 4 5 6

7 8 9 10 11 12

13

Path, Depth, Level, and Height

• There is exactly one path (one sequence of edges) connecting 
each node to the root.

• depth of a node = # of edges on the path from it to the root

• Nodes with the same depth form a level of the tree.

• The height of a tree is the maximum depth of its nodes.
• example: the tree above has a height of 2

depth = 2

level 1

level 0

level 2
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Binary Trees

• In a binary tree, nodes have at most two children.

• distinguish between them using the direction left or right

• Example:

• Recursive definition: a binary tree is either:
1) empty, or
2) a node (the root of the tree) that has:

• one or more pieces of data (the key, and possibly others)
• a left subtree, which is itself a binary tree
• a right subtree, which is itself a binary tree

26’s right child26’s left child

26’s left subtree 26’s right subtree

26

12 32

4 18 38

7 4’s right child

Which of the following is/are not true?

A. This tree has a height of 4.

B. There are 3 leaf nodes.

C. The 38 node is the right child of the 32 node.

D. The 12 node has 3 children.

E. more than one of the above are not true (which ones?)

26

12 32

4

7

18 38
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Representing a Binary Tree Using Linked Nodes
public class LinkedTree {

private class Node {
private int key;      // limit ourselves to int keys
private LLList data;  // list of data for that key
private Node left; // reference to left child
private Node right; // reference to right child
…

}

private Node root;
…

}

Representing a Binary Tree Using Linked Nodes
public class LinkedTree {

private class Node {
private int key;      
private LLList data;  
private Node left;
private Node right;
…

}

private Node root;
…

}

26

12 32

4 18 38

7

32

null

26

12

38

nullnull

18

nullnull

4

null

7

nullnull

ref. to left child
(null if none)

key

rightleft

(not showing
data field)

ref. to right child
(null if none)

root

LinkedTree

object
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Traversing a Binary Tree

• Traversing a tree involves visiting all of the nodes in the tree.

• visiting a node = processing its data in some way

• example: print the key

• We'll look at four types of traversals.  

• each visits the nodes in a different order

• To understand traversals, it helps to remember that every node 
is the root of a subtree.

32 is the root of
26’s right subtree

12 is the root of 
26’s left subtree 

26

12 32

4 18 38

7

4 is the root of 
12’s left subtree 

1: Preorder Traversal

• preorder traversal of the tree whose root is N:
1) visit the root, N
2) recursively perform a preorder traversal of N’s left subtree
3) recursively perform a preorder traversal of N’s right subtree 

• preorder because a node is visited before its subtrees

• The root of the tree as a whole is visited first.

7 

9

8 6

4

5

2
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Implementing Preorder Traversal
public class LinkedTree {

...
private Node root;

public void preorderPrint() {
if (root != null) {

preorderPrintTree(root);      
}
System.out.println();

}
private static void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

• preorderPrintTree() is a static, recursive method that takes
the root of the tree/subtree that you want to print.

• preorderPrint() is a non-static "wrapper" method that makes
the initial call. It passes in the root of the entire tree.

Not always the
same as the root
of the entire tree.

Tracing Preorder Traversal
void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

root: 
print 8

root: 

root:

time

root: 
print 9

root: root: 
print 7

root: 
print 4

root: 

root:

root:

root: 

root: 

root:

root: 

root: 

root: 
print 6

root: 

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7 

9

8 6

4

5

2

base case, since
neither recursive
call is made! we go back 

up the tree 
by returning!

order in which nodes are visited:
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Using Recursion for Traversals
void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

root: 
print 8

root: 

root:

time

root: 
print 9

root: root: 
print 7

root: 
print 4

root: 

root:

root:

root: 

root: 

root:

root: 

root: 

root: 
print 6

root: 

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7 

9

8 6

4

5

2

base case, since
neither recursive
call is made! we go back 

up the tree 
by returning!

• Using recursion allows us to easily go back up the tree.

• Using a loop would be harder. Why?

order in which nodes are visited:

2: Postorder Traversal

• postorder traversal of the tree whose root is N:
1) recursively perform a postorder traversal of N’s left subtree
2) recursively perform a postorder traversal of N’s right subtree
3) visit the root, N 

• postorder because a node is visited after its subtrees

• The root of the tree as a whole is visited last.

7 

9

8 6

4

5

2
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Implementing Postorder Traversal
public class LinkedTree {

…
private Node root;

public void postorderPrint() {
if (root != null) {

postorderPrintTree(root);      
}
System.out.println();

}

private static void postorderPrintTree(Node root) {
if (root.left != null) {

postorderPrintTree(root.left);
}
if (root.right != null) {

postorderPrintTree(root.right);
}
System.out.print(root.key + " ");

}

• Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal
void postorderPrintTree(Node root) {

if (root.left != null) {
postorderPrintTree(root.left);

}
if (root.right != null) {

postorderPrintTree(root.right);
}
System.out.print(root.key + " ");

}

root: 

root: 

root:

time

root: 

root: root: 

root: 
print 4

root: 

root:

root:

root: 
print 8

root: 

root:

root: 

root: 

root: 
print 6

root: 

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7 

9

8 6

4

5

2

order in which nodes are visited:
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3: Inorder Traversal

• inorder traversal of the tree whose root is N:
1) recursively perform an inorder traversal of N’s left subtree
2) visit the root, N
3) recursively perform an inorder traversal of N’s right subtree 

• The root of the tree as a whole is visited between its subtrees.

• We'll see later why this is called inorder traversal!

7 

9

8 6

4

5

2

Implementing Inorder Traversal
public class LinkedTree {

…
private Node root;

public void inorderPrint() {
if (root != null) {

inorderPrintTree(root);      
}
System.out.println();

}

private static void inorderPrintTree(Node root) {
if (root.left != null) {

inorderPrintTree(root.left);
}
System.out.print(root.key + " ");
if (root.right != null) {

inorderPrintTree(root.right);
}

}
}

• Note that the root is printed between the two recursive calls.
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Tracing Inorder Traversal
void inorderPrintTree(Node root) {

if (root.left != null) {
inorderPrintTree(root.left);

}
System.out.print(root.key + " ");
if (root.right != null) {

inorderPrintTree(root.right);
}

}

root: 
print 8

root: 

root:

time

root: 

root: root: 

root: 
print 4

root: 

root:

root:

root: 

root: 

root:

root: 
print 9

root: 

root: 
print 6

root: 

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7 

9

8 6

4

5

2

order in which nodes are visited:

Level-Order Traversal

• Visit the nodes one level at a time, from top to bottom 
and left to right.

• Level-order traversal of the tree above: 7 9  5  8  6  2 4

• We can implement this type of traversal using a queue.

7

9

8 6

4

5

2
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preorder: root, left subtree, right subtree

postorder: left subtree, right subtree, root

inorder: left subtree, root, right subtree

level-order: top to bottom, left to right

• Perform each type of traversal on the tree below:

Tree-Traversal Summary

9 

15

23 8

6

7

10

12

2

5

35 26

• preorder traversal: A M P K L D H T

• inorder traversal: P M L K A H T D

• Draw the tree!

• What's one fact that we can easily determine from one 
of the traversals?

Tree Traversal Puzzle
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Using a Binary Tree for an Algebraic Expression

• We’ll restrict ourselves to fully parenthesized expressions 
using the following binary operators:  +, –, *, /

• Example: ((a + (3 * c)) - (d / 2))

• Leaf nodes are variables or constants.

• Interior nodes are operators.

• their children are their operands

-

+ /

a * 2

3 c

d

Traversing an Algebraic-Expression Tree

• Inorder gives conventional 
algebraic notation.
• print ‘(’ before the recursive 

call on the left subtree

• print ‘)’ after the recursive 
call on the right subtree

• for tree at right: ((a + (b * c)) - (d / e))

• Preorder gives functional notation.

• print ‘(’s and ‘)’s as for inorder, and commas after the 
recursive call on the left subtree

• for tree above: subtr(add(a, mult(b, c)), divide(d, e))

• Postorder gives the order in which the computation must be 
carried out on a stack/RPN calculator.

• for tree above: push a, push b, push c, multiply, add,…

–

+

a *

b c

/

ed
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Fixed-Length Character Encodings

• A character encoding maps each character to a number.

• Computers usually use fixed-length character encodings.

• ASCII - 8 bits per character

example: "bat" is stored in a text
file as the following sequence of bits:

01100010 01100001 01110100

• Unicode - 16 bits per character 
(allows for foreign-language characters; ASCII is a subset)

• Fixed-length encodings are simple, because:

• all encodings have the same length 

• a given character always has the same encoding

binarydecchar

0110000197'a'

0110001098'b'

………

01110100116't'

A Problem with Fixed-Length Encodings

• They tend to waste space.

• Example: an English newspaper article with only:

• upper and lower-case letters (52 characters)

• spaces and newlines (2 characters)

• common punctuation (approx. 10 characters)

• total of 64 unique characters only need ___ bits

• We could gain even more space if we: 

• gave the most common letters shorter encodings (3 or 4 bits)

• gave less frequent letters longer encodings (> 6 bits)
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Variable-Length Character Encodings

• Variable-length encodings compress a text file by:

• using encodings of different lengths for different characters

• assigning shorter encodings to frequently occurring characters

• Example: if we had only four characters

"test" would be encoded as
00 01 111 00   000111100

• Challenge: when reading a document, how do we determine 
the boundaries between characters?

• how do we know how many bits the next character has?

• One requirement: no character's encoding can be the prefix of 
another character's encoding (e.g., couldn't have 00 and 001).

01e

100o

111s

00t

Huffman Encoding

• One type of variable-length encoding

• Based on the actual character frequencies in a given document

• different documents have different encodings

• Huffman encoding uses a binary tree:

• to determine the encoding of each character

• to decode / decompress an encoded file
• putting it back into ASCII
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Huffman Trees

• Example for a text with
only six characters:

• Left branches are labeled with a 0, right branches with a 1.

• Leaf nodes are characters.

• To get a character's encoding, follow the path from the root 
to its leaf node.

• example: i = ?

t e

io a s

0 1

0

0 0

1

1

1

1

0

Building a Huffman Tree

1) Begin by reading through the text to determine the frequencies. 

2) Create a list of nodes containing (character, frequency) pairs 
for each character in the text – sorted by frequency.

3) Remove and "merge" the nodes with 
the two lowest frequencies, forming a 
new node that is their parent. 

• left child = lowest frequency node

• right child = the other node

• frequency of parent = sum of the
frequencies of its children
• in this case, 11 + 23 = 34

'o'

11

'i'

23

'a'

25

's'

26

't'

27

'e'

40

'o'

11

'i'

23

-

34

means
null
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Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes (maintaining sorted order):

5) Repeat steps 3 and 4 until there is only a single node in the list, 
which will be the root of the Huffman tree.

'a'

25

's'

26

't'

27

'e'

40

'o'

11

'i'

23

-

34

Completing the Huffman Tree Example I

• Merge the two remaining nodes with the lowest frequencies:
'a'

25

's'

26

't'

27

-

34

'o'

11

'i'

23

'e'

40

't'

27

'a'

25

's'

26

-

51

-

34

'o'

11

'i'

23

'e'

40
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Completing the Huffman Tree Example II

• Merge the next two nodes:

Completing the Huffman Tree Example II

• Merge again:
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Completing the Huffman Tree Example IV

• The next merge creates the final tree:

• Characters that appear more frequently end up higher in the tree, 
and thus their encodings are shorter.

t

io

0 1

0

0

1

1
e

sa

0

0

1

1

The Shape of the Huffman Tree

• The tree on the last slide is fairly symmetric.

• This won't always be the case!

• depends on the character frequencies

• For example, changing the frequency of 'o' from 11 to 21 
would produce the tree shown below:

• This is the tree that we'll use in the remaining slides.

t e

io a s

0 1

0

0 0

1

1

1

1

0
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Huffman Encoding: Compressing a File

1) Read through the input file and build its Huffman tree.

2) Write a file header for the output file.

• include the character frequencies so the tree can be rebuilt 
when the file is decompressed

3) Traverse the Huffman tree to create a table containing the 
encoding of each character:

4) Read through the input file a second time, and write the 
Huffman code for each character to the output file.

a

e

i

o

s

t

t e

io a s

0 1

0

0 0

1

1

1

1

0

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of 
determining the character boundaries!

example: 101111110000111100
first character =  i

t e

o a s

0 1

0

0 0

1

1

1

1

0

i
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What are the next three characters?

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of 
determining the character boundaries!

example: 101111110000111100
first character =  i (101)

t e

io a s

0 1

0

0 0

1

1

1

1

0
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Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of 
determining the character boundaries!

example: 101111110000111100
101 = right,left,right =  i
111 = right,right,right=  s
110 = right,right,left =  a

00 = left,left =  t
01 = left,right =  e

111 = right,right,right=  s
00 = left,left =  t

t e

io a s

0 1

0

0 0

1

1

1

1

0
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Search Trees

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Binary Search Trees

• Search-tree property: for each node k (k is the key):
• all nodes in k ’s left subtree are < k
• all nodes in k ’s right subtree are >= k

• Our earlier binary-tree example is 
a search tree:

• With a search tree, an inorder traversal visits the nodes in order! 

• in order of increasing key values

26

12 32

4 18 38

7

k

< k

< 26  26

< 12

k

 12
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Searching for an Item in a Binary Search Tree

• Algorithm for searching for an item with a key k:

if k == the root node’s key, you’re done
else if k < the root node’s key, search the left subtree
else search the right subtree

• Example: search for 7

26

12 32

4 18 38

7

Implementing Binary-Tree Search
public class LinkedTree {   // Nodes have keys that are ints

…
private Node root;

public LLList search(int key) {    // "wrapper method"
Node n = searchTree(root, key);  // get Node for key
if (n == null) {

return null;     // no such key
} else {

return n.data;   // return list of values for key   
}

}

private static Node searchTree(Node root, int key) {
if ( ) {           

} else if ( ) { 

} else if (               ) {

} else {

}
}

two base cases
(order matters!)

two 
recursive cases
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Inserting an Item in a Binary Search Tree

• public void insert(int key, Object data)

will add a new (key, data) pair to the tree

• Example 1: a search tree containing student records

• key = the student's ID number (an integer)

• data = a string with the rest of the student record

• we want to be able to write client code that looks like this:
LinkedTree students = new LinkedTree();
students.insert(23, "Jill Jones,sophomore,comp sci");
students.insert(45, "Al Zhang,junior,english");

• Example 2: a search tree containing scrabble words

• key = a scrabble score (an integer)

• data = a word with that scrabble score
LinkedTree tree = new LinkedTree();
tree.insert(4, "lost");

Inserting an Item in a Binary Search Tree (cont.)

• To insert an item (k, d),
we start by searching for k.

• If we find a node with key k, we add 
d to the list of data values for that node.

• example: tree.insert(4, "sail")

• If we don’t find k, the last node seen 
in the search becomes the parent P
of the new node N.

• if k < P’s key, make N the left child of P

• else make N the right child of P

• Special case: if the tree is empty, 
make the new node the root of the tree.

• Important: The resulting tree is still a search tree!

26

12 32

4 18 38

7 35

P

example: 
tree.insert(35, 

"photooxidizes")

N
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Implementing Binary-Tree Insertion

• We'll implement part of the insert() method together.

• We'll use iteration rather than recursion.

• Our method will use two references/pointers:

• trav: performs the traversal down
to the point of insertion

• parent: stays one behind trav

• like the trail reference that we 
sometimes use when traversing 
a linked list

26

12 32

4 18 38

7

parent

trav

Implementing Binary-Tree Insertion
public void insert(int key, Object data) {

Node parent = null;
Node trav = root;
while (trav != null) {

if (trav.key == key) {
trav.data.addItem(data, 0);
return;

}
// what should go here?

}
Node newNode = new Node(key, data);
if (root == null) {   // the tree was empty

root = newNode;
} else if (key < parent.key) {

parent.left = newNode;
} else {  

parent.right = newNode;
}

}

26

12 32

4 18 38

7

parent

trav
insert 35:
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Deleting Items from a Binary Search Tree

• Three cases for deleting a node x

• Case 1: x has no children.
Remove x from the tree by setting its parent’s reference to null.

ex: delete 4

• Case 2: x has one child.
Take the parent’s reference to x and make it refer to x’s child.

ex: delete 12

26

12 32

4 18 38

26

12 32

18 38

26

12 32

18 38

26

18 32

38

Deleting Items from a Binary Search Tree (cont.)

• Case 3: x has two children

• we can't give both children to the parent.  why?

• instead, we leave x's node where it is, and we replace its 
key and data with those from another node

• the replacement must maintain the search-tree inequalities

ex: 
delete 12

two options: which ones?26

12 32

4 18 38

7 20152
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Deleting Items from a Binary Search Tree (cont.)

• Case 3: x has two children (continued):

• replace x's key and data with those from the smallest node 
in x’s right subtree—call it y

• we then delete y
• it will either be a leaf node or will have one right child. why?

• thus, we can delete it using case 1 or 2

ex: delete 12

x

y

copy node y's 
contents into 
node x

delete 
node y 

12

4 18

2015

…

… …

x

y

15

18

2015

…

x15

18

20

…

4

… …

4

… …

Which Node Would Be Used To Replace 9?

9 

4

3 8

5

17

10

1

7

25

15 36

A. 4

B. 8

C. 10

D. 15

E. 17
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Implementing Deletion
public LLList delete(int key) {

// Find the node and its parent.
Node parent = null;
Node trav = root;
while (trav != null && trav.key != key) {

parent = trav;
if (key < trav.key) {

trav = trav.left;
} else {

trav = trav.right;
}

}

// Delete the node (if any) and return the removed items.
if (trav == null) {   // no such key

return null;
} else {

LLList removedData = trav.data;
deleteNode(trav, parent); // call helper method
return removedData;

}
}

26

18 45

35

30

50

15

delete 26:

trav
parent

Implementing Case 3
private void deleteNode(Node toDelete, Node parent) {

if (toDelete.left != null && toDelete.right != null) {
// Find a replacement – and
// the replacement's parent.
Node replaceParent = toDelete;

// Get the smallest item 
// in the right subtree.
Node replace = toDelete.right;
// what should go here?

// Replace toDelete's key and data 
// with those of the replacement item.
toDelete.key = replace.key;
toDelete.data = replace.data;

// Recursively delete the replacement 
// item's old node. It has at most one 
// child, so we don't have to
// worry about infinite recursion.
deleteNode(replace, replaceParent);

} else {
...      

}

26

18 45

35

toDelete

30
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Implementing Cases 1 and 2
private void deleteNode(Node toDelete, Node parent) {

if (toDelete.left != null && toDelete.right != null) {
...

} else {
Node toDeleteChild;
if (toDelete.left != null)

toDeleteChild = toDelete.left;
else

toDeleteChild = toDelete.right;
// Note: in case 1, toDeleteChild
// will have a value of null.

if (toDelete == root)
root = toDeleteChild;

else if (toDelete.key < parent.key)
parent.left = toDeleteChild;

else
parent.right = toDeleteChild;

}     
}

30

18 45

35

toDelete

parent

30

toDeleteChild

Recall: Path, Depth, Level, and Height

• There is exactly one path (one sequence of edges) connecting 
each node to the root.

• depth of a node = # of edges on the path from it to the root

• Nodes with the same depth form a level of the tree.

• The height of a tree is the maximum depth of its nodes.
• example: the tree above has a height of 2

depth = 2

level 1

level 0

level 2
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Efficiency of a Binary Search Tree

• For a tree containing n items, what is the efficiency 
of any of the traversal algorithms?

• you process all n of the nodes

• you perform O(1) operations on each of them

• Search, insert, and delete all have the same time complexity.

• insert is a search followed by O(1) operations

• delete involves either: 

• a search followed by O(1) operations (cases 1 and 2)

• a search partway down the tree for the item, 
followed by a search further down for its replacement, 
followed by O(1) operations (case 3)

Efficiency of a Binary Search Tree (cont.)

• Time complexity of searching:

• best case: 

• worst case:

• you have to go all the way down to level h 
before finding the key or realizing it isn't there

• along the path to level h, you process h + 1 nodes

• average case:

• What is the height of a tree containing n items?
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Balanced Trees

• A tree is balanced if, for each of its nodes, the node’s subtrees 
have the same height or have heights that differ by 1.
• example:

• 26: both subtrees have a height of 1

• 12: left subtree has height 0
right subtree is empty (height = -1)

• 32: both subtrees have a height of 0

• all leaf nodes: both subtrees are empty

• For a balanced tree with n nodes, height = O(log n)

• each time that you follow an edge down the longest path, 
you cut the problem size roughly in half!

• Therefore, for a balanced binary search tree, the worst case
for search / insert / delete is O(h) = O(log n)

• the "best" worst-case time complexity

26

12 32

4 3830

• Extreme case: the tree is equivalent to a linked list

• height = n - 1

• Therefore, for a unbalanced 
binary search tree, the worst case
for search / insert / delete is O(h) = O(n)

• the "worst" worst-case time complexity

• We’ll look next at search-tree variants 
that take special measures to ensure balance.

4

12

What If the Tree Isn't Balanced?

26

32

36

38
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2-3 Trees

• A 2-3 tree is a balanced tree in which:
• all nodes have equal-height subtrees (perfect balance)
• each node is either

• a 2-node, which contains one data item and 0 or 2 children

• a 3-node, which contains two data items and 0 or 3 children

• the keys form a search tree

• Example:

2-node: 3-node:

28 61

10 40

3 14 20 34 51

77 90

68 80 87 93 97

<k k

k

<k1
k1
<k2

k1    k2

k2

Search in 2-3 Trees

• Algorithm for searching for an item with a key k:

if k == one of the root node’s keys, you’re done
else if k < the root node’s first key

search the left subtree
else if the root is a 3-node and k < its second key

search the middle subtree
else

search the right subtree

• Example: search for 87

28 61

10 40

3 34 51

77 90

68 80 87 93 9714 20

<k1
k1
<k2

k1    k2

k2
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50

Insertion in 2-3 Trees

• Algorithm for inserting an item with a key k:

search for k, but don’t stop until you hit a leaf node
let L be the leaf node at the end of the search
if L is a 2-node

add k to L, making it a 3-node  

else if L is a 3-node
split L into two 2-nodes containing the items with the

smallest and largest of: k, L’s 1st key, L’s 2nd key
the middle item is “sent up” and inserted in L’s parent

example: add 52    

50

54 70
… …

50 54

52 70
…

52 54 70

10

3 20

10

3 14 20

Example 1: Insert 8

• Search for 8:

• Add 8 to the leaf node, making it a 3-node:

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

10 40

34 51

77 90

68 93 9714 20 80 873 8
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17
14 20

Example 2: Insert 17

• Search for 17:

• Split the leaf node, and send up the middle of 14, 17, 20
and insert it the leaf node’s parent:    

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

10 40

3 34 51

…

28 61

40

3 34 51

…
10 17

14 20

Example 3: Insert 92

• In which node will we initially try to insert it?

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87
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Example 3: Insert 92

• Search for 92:

• Split the leaf node, and send up the middle of 92, 93, 97
and insert it the leaf node’s parent:

• In this case, the leaf node’s parent is also a 3-node, so we 
need to split is as well…    

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

40

34 51

77 90

68 9780 87

…

9392 92 97

28 61

40

34 51

77 90

68 80 87

…
93

• We split the [77 90] node and we send up the middle of 77, 90, 93:

• We try to insert it in the root node, but the root is also full!

• Then we split the root,
which increases the
tree’s height by 1, but
the tree is still balanced.  

• This is only case in which
the tree’s height increases.

Example 3 (cont.)

92 97

28 61

40

34 51 68 80 87

…
9377 90

92 97

28 61

40

34 51 68 80 87

…
77 93

90

92 97

40

34 51 68 80 87

…
77 93

9028

61
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Efficiency of 2-3 Trees

• A 2-3 tree containing n items has a height h <= log2n.

• Thus, search and insertion are both O(log n).

• search visits at most h + 1 nodes

• insertion visits at most 2h + 1 nodes:

• starts by going down the full height

• in the worst case, performs splits all the way back up to the root

• Deletion is tricky – you may need to coalesce nodes!  
However, it also has a time complexity of O(log n).

• Thus, we can use 2-3 trees for a O(log n)-time data dictionary!

External Storage

• The balanced trees that we've covered don't work well if you
want to store the data dictionary externally – i.e., on disk.

• Key facts about disks:

• data is transferred to and from disk in units called blocks, 
which are typically 4 or 8 KB in size

• disk accesses are slow!

• reading a block takes ~10 milliseconds (10-3 sec)

• vs. reading from memory, which takes ~10 nanoseconds
• in 10 ms, a modern CPU can perform millions of operations!
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B-Trees

• A B-tree of order m is a tree in which each node has: 
• at most 2m entries (and, for internal nodes, 2m + 1 children)
• at least m entries (and, for internal nodes, m + 1 children)
• exception: the root node may have as few as 1 entry
• a 2-3 tree is essentially a B-tree of order 1 

• To minimize the number of disk accesses, we make m
as large as possible. 

• each disk read brings in more items

• the tree will be shorter (each level has more nodes),
and thus searching for an item requires fewer disk reads

• A large value of m doesn’t make sense for a memory-only tree, 
because it leads to many key comparisons per node.  

• These comparisons are less expensive than accessing the disk, 
so large values of m make sense for on-disk trees.

Example: a B-Tree of Order 2

• m = 2: at most 2m = 4 items per node (and at most 5 children)
at least   m = 2 items per node (and at least 3 children)
(except the root, which could have 1 item)

• The above tree holds the same keys this 2-3 tree: 

• We used the same order of insertion to create both trees: 
51, 3, 40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14

20 40  68  90

3  10  14 28  34 93 9751  61 77  80  87

28 61

10 40

3 14 20 34 51

77 90

68 80 87 93 97
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Search in B-Trees

• Similar to search in a 2-3 tree.

• Example: search for 87

20 40  68  90

3  10  14 28  34 93 9751  61 77  80  87

Insertion in B-Trees

• Similar to insertion in a 2-3 tree:

search for the key until you reach a leaf node

if a leaf node has fewer than 2m items, add the item 
to the leaf node

else split the node, dividing up the 2m + 1 items:

the smallest m items remain in the original node

the largest m items go in a new node

send the middle entry up and insert it (and a pointer to 
the new node) in the parent

• Example of an insertion without a split: insert 13

20 40  68  90

3  10  14 28  34 51  61

… …
20 40  68  90

3  10  13 14 28  34 51  61

… …
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Splits in B-Trees

• Insert 5 into the result of the previous insertion:

• The middle item (the 10) is sent up to the root. 
The root has no room, so it is also split, and a new root is formed:

• Splitting the root increases the tree’s height by 1, but the tree 
is still balanced.  This is only way that the tree’s height increases.

• When an internal node is split, its 2m + 2 pointers are split evenly
between the original node and the new node.

20 40  68  90

28  34 51  61

… …
20 40  68  90

3  5    13  14 28  34 51  61

… …
3   10  13  145

10
m = 2

40

20 40  68  90

3  5 13 14 28  34 51  61

… …
10 20 68  90

28  34 51  61

… …
10

3  5 13 14

Analysis of B-Trees

• All internal nodes have at least m children (actually, at least m+1). 

• Thus, a B-tree with n items has a height <= logmn,  and 
search and insertion are both O(logmn).

• As with 2-3 trees, deletion is tricky, but it’s still logarithmic.

20 40  68  90

3  10  14 28  34 93 9751  61 77  80  87

CSCI E-22 Harvard Extension School 204



Search Trees: Conclusions

• Binary search trees can be O(logn), but they can degenerate 
to O(n) running time if they are out of balance. 

• 2-3 trees and B-trees are balanced search trees that 
guarantee O(logn) performance.

• When data is stored on disk, the most important performance 
consideration is reducing the number of disk accesses.

• B-trees offer improved performance for on-disk data dictionaries.
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Heaps and Priority Queues

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Priority Queue

• A priority queue (PQ) is a collection in which each item 
has an associated number known as a priority.

• ("Ann Cudd", 10), ("Robert Brown", 15), 
("Dave Sullivan", 5)

• use a higher priority for items that are "more important"

• Example application: scheduling a shared resource like the CPU

• give some processes/applications a higher priority, 
so that they will be scheduled first and/or more often

• Key operations:

• insert: add an item (with a position based on its priority)
• remove: remove the item with the highest priority

• One way to implement a PQ efficiently is using a type of 
binary tree known as a heap.
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Complete Binary Trees

• A binary tree of height h is complete if: 
• levels 0 through h - 1 are fully occupied
• there are no “gaps” to the left of a node in level h

• Complete:

• Not complete (     =  missing node):

Representing a Complete Binary Tree

• A complete binary tree has a simple array representation.

• The tree's nodes are stored in the array 
in the order given by a level-order traversal.

• top to bottom, left to right

• Examples:

a[0]

a[1] a[2]

a[3] a[4] …

26 12 32 4 18 28

10 8 17 14 326

12

4 18

32

28

10

8

14 3

17
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• The root node is in a[0]

• Given the node in a[i]:

• its left child is in a[2*i + 1]

• its right child is in a[2*i + 2]

• its parent is in a[(i - 1)/2]

(using integer division)

• Examples:

• the left child of the node in a[1] is in a[2*1 + 1] = a[3]

• the left child of the node in a[2] is in a[2*2 + 1] = a[5]

• the right child of the node in a[3] is in a[2*3 + 2] = a[8]

• the right child of the node in a[2] is in _________________ 

• the parent of the node in a[4] is in a[(4-1)/2] = a[1]

• the parent of the node in a[7] is in ___________________

Navigating a Complete Binary Tree in Array Form

a[0]

a[1]

a[4] …a[3]

a[7] a[8]

a[2]

a[5] a[6]

• Assume that the following array represents a complete tree:

What is the left child of 24?

26 12 32 24 18 28 47 10 9

0 1 2 3 4 5 6 7 8
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Heaps

• Heap: a complete binary tree in which each interior node 
is greater than or equal to its children

• examples:

• The largest value is always at the root of the tree.

• The smallest value can be in any leaf node - there’s no 
guarantee about which one it will be.

• We're using max-at-top heaps.  

• in a min-at-top heap, every interior node <= its children

28

16

12 8

20

5

18

8

3 7

2

12

7 10

Which of these is a heap?

• A. B. C.

D. more than one (which ones?)

E. none of them

28

16

12 18

20

5

18

8

3 7

2

12

7 10

2 5
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How to Compare Objects
• We need to be able to compare items in the heap.

• If those items are objects, we can't just do something like this:

if (item1 < item2)

Why not?  

• Instead, we need to use a method to compare them.

An Interface for Objects That Can Be Compared

• The Comparable interface is a built-in generic Java interface:

public interface Comparable<T> {
public int compareTo(T other);

}

• It is used when defining a class of objects that can be ordered.

• Examples from the built-in Java classes:

public class String implements Comparable<String> {
...
public int compareTo(String other) {

...
}

public class Integer implements Comparable<Integer> {
...
public int compareTo(Integer other) {

...
}
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An Interface for Objects That Can Be Compared (cont.)

public interface Comparable<T> {
public int compareTo(T other);

}

• item1.compareTo(item2) should return:

• a negative integer if item1 "comes before" item2

• a positive integer if item1 "comes after" item2

• 0 if item1 and item2 are equivalent in the ordering

• These conventions make it easy to construct appropriate
method calls:

numeric comparison comparison using compareTo
item1 < item2 item1.compareTo(item2) < 0
item1 > item2 item1.compareTo(item2) > 0
item1 == item2 item1.compareTo(item2) == 0

Heap Implementation
public class Heap<T extends Comparable<T>> {

private T[] contents;
private int numItems;

public Heap(int maxSize) {
contents = (T[])new Comparable[maxSize];
numItems = 0;

}
…

}

• Heap is another example of a generic collection class. 

• as usual, T is the type of the elements

• extends Comparable<T> specifies T must implement 
Comparable<T>

• must use Comparable (not Object) when creating the array

a Heap object

contents

numItems 6

... ...

28 16 20 12 8 5

28

16

12 8

20

5
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Heap Implementation (cont.)

public class Heap<T extends Comparable<T>> {
private T[] contents;
private int numItems;

…
}

• The picture above is a heap of integers: 

Heap<Integer> myHeap = new Heap<Integer>(20);

• works because Integer implements Comparable<Integer>

• could also use String or Double

a Heap object

contents

numItems 6

... ...

28 16 20 12 8 5

28

16

12 8

20

5

Removing the Largest Item from a Heap

• Remove and return the item in the root node.  

• In addition, need to move the largest remaining item to the root,
while maintaining a complete tree with each node >= children

• Algorithm:
1.  make a copy of the largest item 
2.  move the last item in the heap 

to the root
3.  “sift down” the new root item 

until it is >= its children (or it’s a leaf)
4.  return the largest item

sift down
the 5:

28

20

16 8

12

5

5

20

16 8

12

20

5

16 8

12

20

16

5 8

12
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Sifting Down an Item

• To sift down item x (i.e., the item whose key is x):
1.  compare x with the larger of the item’s children, y
2.  if x < y, swap x and y and repeat

• Other examples:
sift down
the 10:

sift down
the 7:

10

7

3 5

18

8 6

18

7

3 5

10

8 6

7

26

15 18

23

10

siftDown() Method
private void siftDown(int i) {    // assume i = 0

T toSift = contents[i];

int parent = i;
int child = 2 * parent + 1;
while (child < numItems) {

// If the right child is bigger, set child to be its index.
if (child < numItems - 1  &&
contents[child].compareTo(contents[child + 1]) < 0) {

child = child + 1;
}
if (toSift.compareTo(contents[child]) >= 0) {

break;  // we’re done
}
// Move child up and move down one level in the tree.
contents[parent] = contents[child];
parent = child;
child = 2 * parent + 1;

}

contents[parent] = toSift;
}

• We don’t actually swap
items. We put the sifted item 
in place at the end.

7

26

15 18

23

10

0 1 2 3 4 5

7 26 23 15 18 10

toSift: 7
parent child

0 1
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remove() Method
public T remove() {

// check for empty heap goes here
T toRemove = contents[0];

contents[0] = contents[numItems - 1];
contents[numItems - 1] = null;
numItems--;
siftDown(0);

return toRemove;
}

0 1 2 3 4 5

28 20 12 16 8 5

numItems: 6
toRemove: 28

28

20

16 8

12

5

numItems: 5
toRemove: 28

5

20

16 8

12

0 1 2 3 4 5

20 16 12 5 8 null

numItems: 5
toRemove: 28

20

16

5 8

12

0 1 2 3 4 5

5 20 12 16 8 null

Inserting an Item in a Heap

• Algorithm:
1.  put the item in the next available slot (grow array if needed) 
2.  “sift up” the new item 

until it is <= its parent (or it becomes the root item)

• Example: insert 35 
put it in
place:

sift it up: 20

16

5 8

20

16

5 8

35

16

5 8

20

16

5 8

12

20

16

5 8

12

35

12

35

35

12

20

12
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insert() Method
public void insert(T item) {

if (numItems == contents.length) {
// code to grow the array goes here…

}

contents[numItems] = item;
siftUp(numItems);
numItems++;

}

0 1 2 3 4 5

20 16 12 5 8

numItems: 5
item: 35

20

16

5 8

12

0 1 2 3 4 5

20 16 12 5 8 35

numItems: 5
item: 35

20

16

5 8

0 1 2 3 4 5

35 16 20 5 8 12

numItems: 6

35

16

5 8

12

35

20

12

Time Complexity of a Heap

• A heap containing n items has a height <= log2n. Why?

• Thus, removal and insertion are both O(log n).

• remove: go down at most log2n levels when sifting down; 
do a constant number of operations per level 

• insert: go up at most log2n levels when sifting up; 
do a constant number of operations per level

• This means we can use a heap for a O(log n)-time priority queue.

5

16

14 20

8

1 26
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Using a Heap for a Priority Queue

• Recall: a priority queue (PQ) is a collection in which each item  
has an associated number known as a priority.

• ("Ann Cudd", 10), ("Robert Brown", 15), 
("Dave Sullivan", 5)

• use a higher priority for items that are "more important"

• To implement a PQ using a heap:

• order the items in the heap according to their priorities

• every item in the heap will have a priority >= its children

• the highest priority item will be in the root node

• get the highest priority item by calling heap.remove()!

• For this to work, we need a "wrapper" class for items that 
we put in the priority queue.

• will group together an item with its priority

• with a compareTo() method that compares priorities!

A Class for Items in a Priority Queue
public class PQItem implements Comparable<PQItem> {

// group an arbitrary object with a priority
private Object data;
private int priority;
...

public int compareTo(PQItem other) {
// error-checking goes here…
return (priority - other.priority);

}
}

• Example: PQItem item = new PQItem("Dave Sullivan", 5);

• Its compareTo() compares PQItems based on their priorities.

• item1.compareTo(item2) returns:

• a negative integer if item1 has a lower priority than item2

• a positive integer if item1 has a higher priority than item2

• 0 if they have the same priority
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Using a Heap for a Priority Queue

• Sample client code: 
Heap<PQItem> pq = new Heap<PQItem>(50);
pq.insert(new PQItem("Dave", 5));
pq.insert(new PQItem("Ann", 10));
pq.insert(new PQItem("Bob", 15));

PQItem mostImportant = pq.remove(); // will get Bob!

priority

"Bob"

15

data

15

5 10

a Heap object

contents

numItems 3
pq

"Dave"

5

"Ann"

10

PQItem objects

null ...

Using a Heap to Sort an Array

• Recall selection sort: it repeatedly finds the smallest remaining 
element and swaps it into place:

…

• It isn’t efficient, because it performs a linear scan to 
find the smallest remaining element (O(n) steps per scan).

• Heapsort is a sorting algorithm that repeatedly finds the largest
remaining element and puts it in place.

• It is efficient, because it turns the array into a heap. 

• it can find/remove the largest remaining in O(logn) steps!

0 1 2 3 4 5 6

5 16 8 14 20 1 26

0 1 2 3 4 5 6

1 5 8 14 20 16 26

0 1 2 3 4 5 6

1 16 8 14 20 5 26
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Converting an Arbitrary Array to a Heap

• To convert an array (call it contents) with n items to a heap:
1. start with the parent of the last element:

contents[i], where i = ((n – 1) – 1)/2 = (n – 2)/2
2. sift down contents[i] and all elements to its left

• Example:

• Last element’s parent = contents[(7 – 2)/2] = contents[2].
Sift it down: 

0 1 2 3 4 5 6

5 16 8 14 20 1 26
5

16

14 20

8

1 26

5

16

14 20

8

1 26

5

16

14 20

26

1 8

Converting an Array to a Heap (cont.)

• Next, sift down contents[1]:

• Finally, sift down contents[0]:

5

20

14 16

26

1 8

26

20

14 16

5

1 8

5

16

14 20

26

1 8

5

20

14 16

26

1 8

26

20

14 16

8

1 5
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Heapsort

• Pseudocode:
heapSort(arr) {

// Turn the array into a max-at-top heap.
heap = new Heap(arr);

endUnsorted = arr.length - 1;
while (endUnsorted > 0) {

// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

}

Heapsort Example

• Sort the following array:

• Here’s the corresponding complete tree:

• Begin by converting it to a heap:

0 1 2 3 4 5 6

13 6 45 10 3 22 5

13

6

10 3

45

22 5
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Heapsort Example (cont.)

• Here’s the heap in both tree and array forms:

• We begin looping:

while (endUnsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

0 1 2 3 4 5 6

45 10 22 6 3 13 5

45

10

6 3

22

13 5

endUnsorted: 6

Heapsort Example (cont.)

• Here’s the heap in both tree and array forms:

• Remove the largest item and put it in place:

45

10

6 3 13

22

10

6 3

13

5

22

10

6 3

13

5

0 1 2 3 4 5 6

45 10 22 6 3 13 5

45

10

6 3

22

13 5

endUnsorted: 6

toRemove: 45
0 1 2 3 4 5 6

22 10 13 6 3 5 5

endUnsorted: 6
largestRemaining: 45

0 1 2 3 4 5 6

22 10 13 6 3 5 45

endUnsorted: 5

22

5

5
remove()

copies 45;
moves 5
to root

remove()
sifts down 5;
returns 45

heapSort() puts 45 in place;
decrements endUnsorted
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Heapsort Example (cont.)

22

10

6 3

13

5

13

10

6 3

5

13

10

6 3

5

toRemove: 22
0 1 2 3 4 5 6

13 10 5 6 3 5 45

endUnsorted: 5
largestRemaining: 22

5

13

10

6 3

5

10

6

3

5

10

6

3

5

toRemove: 13
0 1 2 3 4 5 6

10 6 5 3 3 22 45

endUnsorted: 4
largestRemaining: 13

0 1 2 3 4 5 6

10 6 5 3 13 22 45

endUnsorted: 3

3

copy 22;
move 5
to root

sift down 5;
return 22

copy 13;
move 3
to root

sift down 3;
return 13

put 13 in place;
decrement

0 1 2 3 4 5 6

13 10 5 6 3 22 45

endUnsorted: 4

put 22 in place;
decrement endUnsorted

Heapsort Example (cont.)

10

6

3

5

6

3 5

6

3 5

toRemove: 10
0 1 2 3 4 5 6

6 3 5 3 13 22 45

endUnsorted: 3
largestRemaining: 10

6

3 5

5

3

5

3

toRemove: 6
0 1 2 3 4 5 6

5 3 5 10 13 22 45

endUnsorted: 2
largestRemaining: 6

0 1 2 3 4 5 6

5 3 6 10 13 22 45

endUnsorted: 1

3

copy 6;
move 5
to root

sift down 5;
return 6

put 6 in place;
decrement

copy 10;
move 3
to root

sift down 3;
return 10

5

0 1 2 3 4 5 6

6 3 5 10 13 22 45

endUnsorted: 2

put 10 in place;
decrement
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Heapsort Example (cont.)

5

3

3 3

toRemove: 5
0 1 2 3 4 5 6

3 3 6 10 13 22 45

endUnsorted: 1
largestRemaining: 5

0 1 2 3 4 5 6

3 5 6 10 13 22 45

endUnsorted: 0

3copy 5;
move 3
to root

sift down 3;
return 5

put 5 in place;
decrement

• And now we terminate the loop:

while (endUnsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

Efficiency of Heapsort

• Time complexity of going from a heap to a sorted array?

• It can be shown that turning an array into a heap takes O(n) steps.

• even better than O(n log n)!

• n/2 calls to siftDown(), most of which involve small subheaps

• Thus, total time complexity = ?

5

16

14 20

8

1 26
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How Does Heapsort Compare?

• Heapsort matches mergesort for the best worst-case time 
complexity, but it has better space complexity.

• Insertion sort is still best for arrays that are almost sorted.

• Quicksort is still typically fastest in the average case.

algorithm best case avg case worst case extra 
memory

selection sort O(n2) O(n2) O(n2) O(1)

insertion sort O(n) O(n2) O(n2) O(1)

Shell sort O(n log n) O(n1.5) O(n1.5) O(1)

bubble sort O(n2) O(n2) O(n2) O(1)

quicksort O(n log n) O(n log n) O(n2) O(log n)
worst: O(n)

mergesort O(n log n) O(n log n) O(nlog n) O(n)

heapsort O(n log n) O(n log n) O(nlog n) O(1)
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Hash Tables

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Data Dictionary Revisited

• We've considered several data structures that allow us to store 
and search for data items using their key fields:

• We'll now look at hash tables, which can do better than O(log n).

inserting an itemsearching for an itemdata structure

O(n) O(log n) 
using binary search

a list implemented using 
an array

O(n)O(n)
using linear search 

a list implemented using 
a linked list

binary search tree

balanced search trees 
(2-3 tree, B-tree, others)
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Ideal Case: Searching = Indexing

• We would achieve optimal efficiency if we could treat
the key as an index into an array.

• Example: storing data about members of a sports team

• key = jersey number (some value from 0-99).

• class for an individual player's record:
public class Player {

private int jerseyNum;
private String firstName;
…

}

• store the player records in an array:
Player[] teamRecords = new Player[100];

• In such cases, search and insertion are O(1):
public Player search(int jerseyNum) {

return teamRecords[jerseyNum];
}

Hashing: Turning Keys into Array Indices

• In most real-world problems, indexing is not as simple as
the sports-team example. Why?

•

•

•

• To handle these problems, we perform hashing: 

• use a hash function to convert the keys into array indices
"Sullivan"  18

• use techniques to handle cases in which multiple keys 
are assigned the same hash value

• The resulting data structure is known as a hash table.
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Hash Functions

• A hash function defines a mapping from keys to integers.

• We then use the modulus operator to get a valid array index.

key value integer         integer in [0, n – 1]
(n = array length)

• Here's a very simple hash function for keys of lower-case letters:
h(key) = ASCII value of first char – ASCII value of 'a'

• examples:
h("ant") = ASCII for 'a' – ASCII for 'a' = 0
h("cat") = ASCII for 'c' – ASCII for 'a' = 2

• h(key) is known as the key's hash code.

• A collision occurs when items with different keys are assigned 
the same hash code.

hash
function

%

Dealing with Collisions I: Separate Chaining

• Each position in the hash table serves as a bucket that can 
store multiple data items. 

• Two options:

1. each bucket is itself an array
• need to preallocate, and a bucket may become full

2. each bucket is a linked list
• items with the same hash code are "chained" together 
• each "chain" can grow as needed

0

null1

2

null3

...…

"ant" "ape"

null

"cat"

null
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Dealing with Collisions II: Open Addressing

• When the position assigned by the hash function is occupied, 
find another open position.

• Example: "wasp" has a hash code of 22, 
but it ends up in position 23 because 
position 22 is occupied.

• We'll consider three ways of finding an
open position – a process known as probing.

• We also perform probing when searching.

• example: search for "wasp"

• look in position 22

• then look in position 23

• need to figure out when to safely stop
searching (more on this soon!)

"ant"0

1

"cat"2

3

"emu"4

5

6

7

...…

"wolf"22

"wasp"23

"yak"24

"zebra"25

Linear Probing

• Probe sequence:  h(key), h(key) + 1, h(key) + 2, …, 
wrapping around as necessary.

• Examples:
• "ape" (h = 0) would be placed in position 1, 

because position 0 is already full.
• "bear" (h = 1): try 1, 1 + 1, 1 + 2 – open!
• where would "zebu" end up?

• Advantage: if there is an open cell, 
linear probing will eventually find it.

• Disadvantage: get "clusters" of occupied cells
that lead to longer subsequent probes.

• probe length = the number of positions 
considered during a probe

"ant"0

"ape"1

"cat"2

"bear"3

"emu"4

5

6

7

...…

"wolf"22

"wasp"23

"yak"24

"zebra"25
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• Probe sequence:  h(key), h(key) + 12, h(key) + 22, h(key) + 32, …,
wrapping around as necessary.

• Examples:
• "ape" (h = 0): try 0, 0 + 1 – open! 
• "bear" (h = 1): try 1, 1 + 1, 1 + 4 – open!
• "zebu"? 

• Advantage: smaller clusters of occupied cells

• Disadvantage: may fail to find an existing 
open position. For example:
table size = 10
x = occupied

trying to insert a
key with h(key) = 0

offsets of the probe
sequence in italics

Quadratic Probing

x   0

1 81x1

2

3

4 64x4

25x   5

16 36x6

7

8

9 49x9

"ant"0

"ape"1

"cat"2

3

"emu"4

"bear"5

6

7

...…

"wolf"22

"wasp"23

"yak"24

"zebra"25

Double Hashing

• Use two hash functions:

• h1 computes the hash code

• h2 computes the increment for probing

• probe sequence:  h1, h1 + h2, h1 + 2*h2, …

• Examples:
• h1 = our previous h
• h2 = number of characters in the string
• "ape" (h1 = 0, h2 = 3): try 0, 0 + 3 – open! 
• "bear" (h1 = 1, h2 = 4): try 1 – open!
• "zebu"? 

• Combines good features of linear and quadratic:

• reduces clustering

• will find an open position if there is one,
provided the table size is a prime number

"ant"0

"bear"1

"cat"2

"ape"3

"emu"4

5

6

7

...…

"wolf"22

"wasp"23

"yak"24

"zebra"25
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Removing Items Under Open Addressing

• Problematic example (using linear probing):
• insert "ape" (h = 0): try 0, 0 + 1 – open! 
• insert "bear" (h = 1): try 1, 1 + 1, 1 + 2 – open!
• remove "ape"
• search for "ape": try 0, 0 + 1 – conclude not in table
• search for "bear": try 1 – conclude not in table, 

but "bear" is further down in the table!

• To fix this problem, distinguish between:

• removed positions that previously held an item

• empty positions that have never held an item 

• During probing, we don't stop if we see a removed position.
ex: search for "bear": try 1 (removed), 1 + 1, 1 + 2 – found!

• We can insert items in either empty or removed positions.

"ant"0

1

"cat"2

"bear"3

"emu"4

5

...…

"wolf"22

"wasp"23

"yak"24

"zebra"25

An Interface For Hash Tables
public interface HashTable {

boolean insert(Object key, Object value);
Queue<Object> search(Object key);
Queue<Object> remove(Object key);

}

• insert() takes a key-value pair and returns:

• true if the key-value pair can be added

• false if it cannot be added (referred to as overflow)

• search() and remove() both take a key, and return a queue 
containing all of the values associated with that key.

• example: an index for a book
• key = word
• values = the pages on which that word appears

• return null if the key is not found
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An Implementation Using Open Addressing
public class OpenHashTable implements HashTable {

private class Entry {
private Object key;
private LLQueue<Object> values;
…

}
…
private Entry[] table;
private int probeType;

}

• We use a private inner class for the entries in the hash table. 

• We use an LLQueue for the values associated with a given key. 

0

1

null2

null3

null4

……

LLQueue
object

"ant"

"ape"
table

LINEARprobeType
LLQueue
object

Empty vs. Removed

• When we remove a key and its values, we:

• leave the Entry object in the table

• set the Entry object's key and values fields to null

• example: after remove("ape"):

• Note the difference:

• a truly empty position has a value of null in the table
(example: positions 2, 3 and 4 above)

• a removed position refers to an Entry object whose
key and values fields are null (example: position 1 above)

0

1

null2

null3

null4

……

LLQueue
object

"ant"

"ape"null

null

table

LINEARprobeType
LLQueue
object
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Probing Using Double Hashing
private int probe(Object key) {

int i = h1(key);    // first hash function
int h2 = h2(key);   // second hash function

// keep probing until we get an empty position or match
while (table[i] != null && !key.equals(table[i].key)) {

i = (i + h2) % table.length;
}

return i;
}

• It is essential that we:

• check for table[i] != null first. why?

• call the equals method on key, not table[i].key. why?

Avoiding an Infinite Loop

• The while loop in our probe method could lead to an infinite loop.

while (table[i] != null && !key.equals(table[i].key)) {
i = (i + h2) % table.length;

}

• When would this happen?

• We can stop probing after checking n positions (n = table size), 
because the probe sequence will just repeat after that point.

• for quadratic probing: 
(h1 + n2) % n  =  h1 % n
(h1 + (n+1)2) % n  =  (h1 + n2 + 2n + 1) % n = (h1 + 1)%n

• for double hashing: 
(h1 + n*h2) % n  =  h1 % n
(h1 + (n+1)*h2) % n  =  (h1 + n*h2 + h2) % n = (h1 + h2)%n
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Avoiding an Infinite Loop (cont.)

private int probe(Object key) {
int i = h1(key);    // first hash function
int h2 = h2(key);   // second hash function
int numChecked = 1;

// keep probing until we get an empty position or a match
while (table[i] != null && !key.equals(table[i].key)) {

if (numChecked == table.length) {
return -1;

}
i = (i + h2) % table.length;
numChecked++;

}

return i;
}

Search and Removal
public LLQueue<Object> search(Object key) {

// throw an exception if key == null
int i = probe(key);
if (i == -1 || table[i] == null) {

return null;
} else {

return table[i].values;
}

}

public LLQueue<Object> remove(Object key) {
// throw an exception if key == null
int i = probe(key);
if (i == -1 || table[i] == null) {

return null;
}

LLQueue<Object> removedVals = table[i].values;
table[i].key = null;
table[i].values = null;
return removedVals;

}
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Insertion

• We begin by probing for the key.

• Several cases:

1. the key is already in the table (we're inserting a duplicate)

 add the value to the values in the key's Entry

2. the key is not in the table: three subcases:

a.  encountered 1 or more removed positions while probing
 put the (key, value) pair in the first removed position

seen during probing. why?

b.  no removed position; reached an empty position 
 put the (key, value) pair in the empty position

c.  no removed position or empty position
 overflow; return false

Tracing Through Some Examples

• Start with the hash table at right with:

• double hashing

• our earlier hash functions h1 and h2

• Perform the following operations:

• insert "bear" (h1 = 1, h2 = 4): 

• insert "bison" (h1 = 1, h2 = 5):

• insert "cow" (h1 = 2, h2 = 3):

• delete "emu" (h1 = 4, h2 = 3):

• search "eel" (h1 = 4, h2 = 3):

• insert "bee" (h1 = ___, h2 = ____):

"ant"0

1

"cat"2

3

"emu"4

"fox"5

6

7

8

9

10
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Dealing with Overflow

• Overflow = can't find a position for an item

• When does it occur?

• linear probing: 

• quadratic probing:

•

•

• double hashing:
• if the table size is a prime number: same as linear
• if the table size is not a prime number: same as quadratic

• To avoid overflow (and reduce search times), grow the hash table 
when the % of occupied positions gets too big.

• problem: we need to rehash all of the existing items. why?

Implementing the Hash Function

• Characteristics of a good hash function:
1) efficient to compute

2) uses the entire key

• changing any char/digit/etc. should change the hash code

3) distributes the keys more or less uniformly across the table

4) must be a function!  

• a key must always get the same hash code

• In Java, every object has a hashCode() method.

• the version inherited from Object returns a value 
based on an object's memory location 

• classes can override this version with their own
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Hash Functions for Strings: version 1

• ha = the sum of the characters' ASCII values

• example: ha("eat") = 101 + 97 + 116 = 314

• All permutations of a given set of characters get the same code.

• example: ha("tea") = ha("eat")

• could be useful in a Scrabble game

• allow you to look up all words that can be formed 
from a given set of characters

• The range of possible hash codes is very limited.

• example: hashing keys composed of 1-5 lower-case char's 
(padded with spaces)

• 26*27*27*27*27 = over 13 million possible keys

• smallest code = ha("a    ") = 97 + 4*32 = 225
largest code = ha("zzzzz") = 5*122 = 610

610 – 225 
= 385 codes

Hash Functions for Strings: version 2

• Compute a weighted sum of the ASCII values:

hb = a0bn–1 + a1bn–2 + … + an–2b + an–1

where ai = ASCII value of the ith character
b = a constant
n = the number of characters

• Multiplying by powers of b allows the positions of the characters 
to affect the hash code.

• different permutations get different codes

• We may get arithmetic overflow, and thus the code 
may be negative. We adjust it when this happens.

• Java uses this hash function with b = 31 in the hashCode()
method of the String class.
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Hash Table Efficiency

• In the best case, search and insertion are O(1).

• In the worst case, search and insertion are linear.

• open addressing: O(m), where m = the size of the hash table
• separate chaining: O(n), where n = the number of keys

• With good choices of hash function and table size, 
complexity is generally better than O(log n) and approaches O(1).

• load factor = # keys in table / size of the table.
To prevent performance degradation:

• open addressing: try to keep the load factor < 1/2
• separate chaining: try to keep the load factor < 1

• Time-space tradeoff: bigger tables have better performance, 
but they use up more memory.

Hash Table Limitations

• It can be hard to come up with a good hash function for a 
particular data set.

• The items are not ordered by key. As a result, we can't easily:

• print the contents in sorted order
• perform a range search (find all values between v1 and v2)
• perform a rank search – get the kth largest item

We can do all of these things with a search tree.
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Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(the sequence of positions seen during probing)

"ant"0

1

"cat"2

3

"emu"4

5

6

7

8

9

10
A. 1, 2, 5

B. 1, 6

C. 1, 7, 2

D. 1, 7, 3

E. 1, 7, 2, 8 
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Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6)    try: 1 % 11 = 1

(1 + 6) % 11 = 7
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8
empty cell, so stop probing

"ant"0

1

"cat"2

3

"emu"4

5

6

7

8

9

10
A. 1, 2, 5

B. 1, 6

C. 1, 7, 2

D. 1, 7, 3

E. 1, 7, 2, 8 

Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6)    try: 1 % 11 = 1 

(1 + 6) % 11 = 7 
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8

• If we insert "baboon", in what position will it go? 

"ant"0

1

"cat"2

3

"emu"4

5

6

7

8

9

10

A. 1 B. 7 C. 2 D.   8
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Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6)    try: 1 % 11 = 1 

(1 + 6) % 11 = 7 
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8

• If we insert "baboon", in what position will it go? 

"ant"0

"baboon"1

"cat"2

3

"emu"4

5

6

7

8

9

10

A. 1 B. 7 C. 2 D.   8

the first removed position seen while probing
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Graphs

Computer Science E-22
Harvard Extension School

David G. Sullivan, Ph.D.

• A graph consists of: 
• a set of vertices (also known as nodes)
• a set of edges (also known as arcs), each of which connects 

a pair of vertices

What is a Graph?

vertex / node

edge / arc

e

b d f h j

a c i

g
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• Vertices represent cities.

• Edges represent highways.

• This is a weighted graph, with a cost associated with each edge.

• in this example, the costs denote mileage

• We’ll use graph algorithms to answer questions like 
“What is the shortest route from Portland to Providence?”

Example: A Highway Graph

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84

74

• Two vertices are adjacent if they are connected by a single edge.
• ex: c and g are adjacent, but c and i are not

• The collection of vertices that are adjacent to a vertex v are 
referred to as v’s neighbors.
• ex: c’s neighbors are a, b, d, f, and g

Relationships Among Vertices
e

b d f h j

a c i

g
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• A path is a sequence of edges that connects two vertices. 

• A graph is connected if there is 
a path between any two vertices.
• ex: the six vertices at right are part 

of a graph that is not connected

• A graph is complete if there is an 
edge between every pair of vertices.
• ex: the graph at right is complete

Paths in a Graph
e

b d f h j

a c i

g

• A directed graph has a direction associated with each edge, 
which is depicted using an arrow: 

• Edges in a directed graph are often represented as ordered 
pairs of the form (start vertex, end vertex).
• ex: (a, b) is an edge in the graph above, but (b, a) is not.

• In a path in a directed graph, the end vertex of edge i 
must be the same as the start vertex of edge i + 1.
• ex: { (a, b), (b, e), (e, f) } is a valid path.

{ (a, b), (c, b), (c, a) } is not. 

Directed Graphs

e

b d f

a c
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• A cycle is a path that:

• leaves a given vertex using one edge

• returns to that same vertex using a different edge

• Examples: the highlighted paths below

• An acyclic graph has no cycles.

Cycles in a Graph

e

b d f h

a c i

• A tree is a special type of graph. 

• connected, undirected, and acyclic

• we usually single out one of the vertices to be the root,
but graph theory does not require this

a graph that is not a tree, a tree using the same nodes
because it has cycles

another tree using the same nodes

Trees vs. Graphs

e

b d f h

a c i

e

b d f h

a c i

e

b d f h

a c i
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• A spanning tree is a subset of a connected graph that contains: 

• all of the vertices

• a subset of the edges that form a tree

• Recall this graph with cycles 
from the previous slide:

• The trees on that slide were spanning trees for this graph.
Here are two others:

Spanning Trees

e

b d f h

a c i

e

b d f h

a c i

e

b d f h

a c i

Representing a Graph: Option 1

• Use an adjacency matrix – a two-dimensional array in which
element [r][c] = the cost of going from vertex r to vertex c

• Example:

• Use a special value to indicate there’s no edge from r to c

• shown as a shaded cell above

• can’t use 0, because an edge may have an actual cost of 0

• This representation: 

• wastes memory if a graph is sparse (few edges per vertex)

• is memory-efficient if a graph is dense (many edges per vertex)

3210

44540

391

8339542

83443

1. Portland

2. Portsmouth

0. Boston3. Worcester

54

44

83

39
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Representing a Graph: Option 2

• Use one adjacency list for each vertex.

• a linked list with info on the edges coming from that vertex

• This representation uses less memory if a graph is sparse.

• It uses more memory if a graph is dense.

• because of the references linking the nodes

3

44

0

1

2

3

2

54
null

2

39
null

1

39

0

44

2

83
null

1. Portland

2. Portsmouth

0. Boston3. Worcester

39

54

44

83

3

83
null

0

54

Graph Class
public class Graph {

private class Vertex {
private String id;
private Edge edges;  // adjacency list
private Vertex next;
private boolean encountered;
private boolean done;
private Vertex parent;
private double cost;
…

}

private class Edge {
private Vertex start;
private Vertex end;
private double cost;
private Edge next;
…

}

private Vertex vertices;
…

}

The highlighted fields 
are shown in the diagram

on the previous page.
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Our Graph Representation

• Each Vertex object (shown in blue) stores info. about a vertex.

• including an adjacency list of Edge objects (the purple ones)

• A Graph object has a single field called vertices

• a reference to a linked list of Vertex objects

• a linked list of linked lists!

44

null

54

null

39

39 54

44

null

83

“Boston”

“Portland”

“Portsmouth”

null

“Worcester”

vertices Portland

Portsmouth

BostonWorcester

39

54

44

83

83

null

Traversing a Graph

• Traversing a graph involves starting at some vertex and visiting 
all vertices that can be reached from that vertex.

• visiting a vertex = processing its data in some way

• if the graph is connected, all of its vertices will be visited

• We will consider two types of traversals:

• depth-first: proceed as far as possible along a given path 
before backing up

• breadth-first: visit a vertex 
visit all of its neighbors
visit all unvisited vertices 2 edges away
visit all unvisited vertices 3 edges away, etc.
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Depth-First Traversal

• Visit a vertex, then make recursive calls on all of its 
yet-to-be-visited neighbors:

private static void dfTrav(Vertex v, Vertex parent) {
System.out.println(v.id);  // visit v
v.done = true;
v.parent = parent;      // record where we came from

// walk down v’s adjacency list
Edge e = v.edges;
while (e != null) {

Vertex w = e.end;   // consider each neighbor w
if (!w.done) {      // if w has not been visited

dfTrav(w, v);
}   
e = e.next;

}
}

Example: Depth-First Traversal from Portland
Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84 1

2

34

5

6

7

8

74

dfTrav(Ptl, null)
w = Pts
dfTrav(Pts, Ptl)

w = Ptl, Bos
dfTrav(Bos, Pts)
w = Wor
dfTrav(Wor, Bos)

w = Pro
dfTrav(Pro, Wor)

w = Wor, Bos, NY
dfTrav(NY, Pro)
w = Pro
return

no more neighbors
return

w = Bos, Con
dfTrav(Con, Wor)
…

For the examples, we’ll
assume that the edges in 
each vertex’s adjacency list 
are sorted by increasing 
edge cost.

void dfTrav(Vertex v, Vertex parent) {
System.out.println(v.id);
v.done = true;
v.parent = parent;
Edge e = v.edges;
while (e != null) {

Vertex w = e.end;
if (!w.done) {

dfTrav(w, v);
}
e = e.next;

}
}
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Depth-First Spanning Tree

The edges obtained by 
following the parent
references form a spanning 
tree with the origin of the 
traversal as its root.

From any city, we can get to 
the origin by following the 
roads in the spanning tree.

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84 1

2

34

5

6

7

8

Portland

Portsmouth

Boston

Worcester

Providence Concord Albany

New York

74

Another Example: 
Depth-First Traversal from Worcester

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84

• In what order will the cities be visited?

• Which edges will be in the resulting spanning tree?

74
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• To discover a cycle in an undirected graph, we can:

• perform a depth-first traversal, marking the vertices as visited

• if a visited vertex has a neighbor that is (1) not its parent, and 
(2) already marked as visited, there must be a cycle

• If no cycles found during the traversal, the graph is acyclic.

• This doesn't work for directed graphs:

• c is a neighbor of both a and b

• there is no cycle

Checking for Cycles in an Undirected Graph
e

b d f h

a c i

cycle

b

a c

Breadth-First Traversal

• Use a queue to store vertices we've seen but not yet visited:
private static void bfTrav(Vertex origin) {

origin.encountered = true;
origin.parent = null;
Queue<Vertex> q = new LLQueue<Vertex>();
q.insert(origin);

while (!q.isEmpty()) {
Vertex v = q.remove();
System.out.println(v.id);         // Visit v.

// Add v’s unencountered neighbors to the queue.
Edge e = v.edges;
while (e != null) {

Vertex w = e.end;
if (!w.encountered) {

w.encountered = true;
w.parent = v;
q.insert(w);

}
e = e.next;

}
}

}           
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Example: Breadth-First Traversal from Portland
Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84 1

2

45

6

8

3

7

74

Evolution of the queue:
remove insert queue contents

Portland Portland
Portland Portsmouth, Concord Portsmouth, Concord
Portsmouth Boston, Worcester Concord, Boston, Worcester
Concord none Boston, Worcester
Boston Providence Worcester, Providence
Worcester Albany Providence, Albany
Providence New York Albany, New York
Albany none New York
New York none empty

Breadth-First Spanning Tree

Portland

Portsmouth

Boston

Providence

New York

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84 1

2

45

6

8

3

7

Concord

Worcester

Albany

Portland

Portsmouth

Boston

Worcester

Providence Concord Albany

New York

breadth-first spanning tree: depth-first spanning tree:

74
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Another Example: 
Breadth-First Traversal from Worcester

Evolution of the queue:
remove insert queue contents

Portland

Portsmouth

Boston

Concord

Albany

Providence

New York

39

54

44

83

4942

185

134

63

84

74

Worcester

Time Complexity of Graph Traversals

• let V = number of vertices in the graph
E = number of edges

• If we use an adjacency matrix, a traversal requires O(V2) steps.

• why?  

• If we use adjacency lists, a traversal requires O(V + E) steps.

• visit each vertex once

• traverse each vertex's adjacency list at most once
• the total length of the adjacency lists is at most 2E = O(E)

• for a sparse graph, O(V + E) is better than O(V2)

• for a dense graph, E = O(V2), so both representations are O(V2)

• In the remaining notes, we'll assume an adjacency-list 
implementation.
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Minimum Spanning Tree

• A minimum spanning tree (MST) has the smallest total cost 
among all possible spanning trees.
• example:

• If all edges have unique costs, there is only one MST.
If some edges have the same cost, there may be more than one.

• Example applications:
• determining the shortest highway system for a set of cities
• calculating the smallest length of cable needed to connect 

a network of computers

39

54

44

83

39

44

83

Portland

Portsmouth

BostonWorcester

one possible spanning tree
(total cost = 39 + 83 + 54 = 176)

the minimal-cost spanning tree
(total cost = 39 + 54 + 44 = 137)

Portland

Portsmouth

BostonWorcester

54

Building a Minimum Spanning Tree

• Claim: If you divide the vertices into two disjoint subsets A and B,
the lowest-cost edge (va, vb) joining a vertex in A to a vertex in B 
must be part of the MST.

Proof by contradiction: 
1. Assume we can create an MST (call it T) that doesn’t include (va, vb).
2. T must include a path from va to vb, so it must include 

one of the other edges (va', vb') that span A and B, 
such that (va', vb') is part of the path from va to vb.

3. Adding (va, vb) to T introduces a cycle.
4. Removing (va', vb') gives a spanning tree with a 

lower total cost, which contradicts the original assumption.

va' vb'

vbva

Albany

39

54

44

83

4942
185

134

63

84

74
Portsmouth

Boston

Providence

Portland

Concord

Worcester

New York

example:
subset A = unshaded
subset B = shaded

The 6 bold edges each join 
a vertex in A to a vertex in B.

The one with the lowest cost 
(Portland to Portsmouth) 
must be in the MST.
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Prim’s MST Algorithm

• Begin with the following subsets:
• A = any one of the vertices
• B = all of the other vertices

• Repeatedly do the following:

• select the lowest-cost edge (va, vb) 
connecting a vertex in A to a vertex in B

• add (va, vb) to the spanning tree

• move vertex vb from set B to set A

• Continue until set A contains all of the vertices.

Example: Prim’s Starting from Concord

• Tracing the algorithm:
edge added   set A set B                                  

{Con} {Alb, Bos, NY, Ptl, Pts, Pro, Wor}
(Con, Wor) {Con, Wor} {Alb, Bos, NY, Ptl, Pts, Pro}
(Wor, Pro) {Con, Wor, Pro} {Alb, Bos, NY, Ptl, Pts}
(Wor, Bos)    {Con, Wor, Pro, Bos} {Alb, NY, Ptl, Pts}
(Bos, Pts) {Con, Wor, Pro, Bos, Pts} {Alb, NY, Ptl}
(Pts, Ptl) {Con, Wor, Pro, Bos, Pts, Ptl} {Alb, NY}
(Wor, Alb) {Con, Wor, Pro, Bos, Pts, Ptl, Alb} {NY}
(Pro, NY) {Con,Wor,Pro,Bos,Pts,Ptl,Alb,NY} {}

Portland (Ptl)

Portsmouth(Pts)

Boston (Bos)

Concord (Con)

Albany (Alb) Worcester(Wor)

Providence(Pro)

New York (NY)

39

54

44

83

4942

185

134

63

84

74
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MST May Not Give Shortest Paths

• The MST is the spanning tree with the minimal total edge cost.

• It does not necessarily include the minimal cost path
between a pair of vertices.

• Example: shortest path from Boston to Providence 
is along the single edge connecting them

• that edge is not in the MST

Portland (Ptl)

Portsmouth(Pts)

Boston (Bos)

Concord (Con)

Albany (Alb) Worcester(Wor)

Providence(Pro)

New York (NY)

39

54

44

83

4942

185

134

63

84

74

Implementing Prim’s Algorithm

• We use the done field to keep track of the sets.

• if v.done == true, v is in set A 

• if v.done == false, v is in set B

• We repeatedly scan through the lists of vertices and edges 
to find the next edge to add.

 O(EV)

• We can do better!

• use a heap-based priority queue to store the vertices in set B

• priority of a vertex x =  –1  *    cost of the lowest-cost edge
connecting x to a vertex in set A

• why multiply by  –1?

• somewhat tricky: need to update the priorities over time

 O(E log V)
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The Shortest-Path Problem

• It’s often useful to know the shortest path from one vertex to 
another – i.e., the one with the minimal total cost

• example application: routing traffic in the Internet

• For an unweighted graph, we can simply do the following:

• start a breadth-first traversal from the origin, v

• stop the traversal when you reach the other vertex, w

• the path from v to w in the resulting (possibly partial)
spanning tree is a shortest path

• A breadth-first traversal works for an unweighted graph because:

• the shortest path is simply one with the fewest edges

• a breadth-first traversal visits cities in order according to the 
number of edges they are from the origin.

• Why might this approach fail to work for a weighted graph?

Dijkstra’s Algorithm

• One algorithm for solving the shortest-path problem for 
weighted graphs was developed by E.W. Dijkstra.

• It allows us to find the shortest path from a vertex v (the origin)
to all other vertices that can be reached from v.

• Basic idea:

• maintain estimates of the shortest paths 
from the origin to every vertex (along with their costs)

• gradually refine these estimates as we traverse the graph

• Initial estimates:
path cost

the origin itself: stay put! 0

all other vertices: unknown infinity
5

14

7

A
(0)

C (inf)

B
(inf)
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Dijkstra’s Algorithm (cont.)

• We say that a vertex w is finalized if we have found the 
shortest path from v to w.

• We repeatedly do the following:

• find the unfinalized vertex w with the lowest cost estimate

• mark w as finalized (shown as a filled circle below)

• examine each unfinalized neighbor x of w to see if there
is a shorter path to x that passes through w 

• if there is, update the shortest-path estimate for x

• Example:

5

14

7 5

14

7 5

14

7      (5 + 7 < 14)

A
(0)

C (inf)

B
(inf)

A
(0)

C (5)

B
(14)

A
(0)

C (5)

B
(12)

Another Example: Shortest Paths from Providence

• Initial estimates:

Boston infinity
Worcester infinity
Portsmouth infinity
Providence 0

• Providence has the smallest unfinalized estimate, so we finalize it. 

• We update our estimates for its neighbors:

Boston 49 (< infinity)
Worcester 42 (< infinity)
Portsmouth infinity
Providence 0

Portsmouth

BostonWorcester

Providence

54

44

83

4942

Portsmouth

BostonWorcester

Providence

54

44

83

4942
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Boston 49
Worcester 42
Portsmouth infinity
Providence 0

• Worcester has the smallest unfinalized estimate, so we finalize it.
• any other route from Prov. to Worc. would need to go via Boston, 

and since (ProvWorc) < (Prov Bos), we can’t do better.

• We update our estimates for Worcester's unfinalized neighbors:
Boston 49   (no change)
Worcester 42
Portsmouth 125 (42 + 83 < infinity)
Providence 0

Shortest Paths from Providence (cont.)

Portsmouth

BostonWorcester

Providence

54

44

83

4942

Portsmouth

BostonWorcester

Providence

54

44

83

4942

Boston 49
Worcester 42
Portsmouth 125
Providence 0

• Boston has the smallest unfinalized estimate, so we finalize it.

• we'll see later why we can safely do this!

• We update our estimates for Boston's unfinalized neighbors:
Boston 49
Worcester 42
Portsmouth 103 (49 + 54 < 125)
Providence 0

Shortest Paths from Providence (cont.)

Portsmouth

BostonWorcester

Providence

54

44

83

4942

Portsmouth

BostonWorcester

Providence

54

44

83

4942
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Boston 49
Worcester 42
Portsmouth 103
Providence 0

• Only Portsmouth is left, so we finalize it.

Shortest Paths from Providence (cont.)
Portsmouth

BostonWorcester

Providence

44

83

4942

54

Finalizing a Vertex

• Let w be the unfinalized vertex with the smallest cost estimate. 
Why can we finalize w, before seeing the rest of the graph?

• We know that w’s current estimate is for the shortest path to w 
that passes through only finalized vertices.

• Any shorter path to w would have to pass through one of the 
other encountered-but-unfinalized vertices, but they are all 
further away from the origin than w is!
• their cost estimates may decrease in subsequent stages, 

but they can’t drop below w’s current estimate!

origin

other finalized vertices

encountered but 
unfinalized 
(i.e., it has a 
non-infinite estimate)

w
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Pseudocode for Dijkstra’s Algorithm
dijkstra(origin)

origin.cost = 0
for each other vertex v

v.cost = infinity;

while there are still unfinalized vertices with cost < infinity 
find the unfinalized vertex w with the minimal cost
mark w as finalized

for each unfinalized vertex x adjacent to w
cost_via_w = w.cost + edge_cost(w, x)
if (cost_via_w < x.cost)

x.cost = cost_via_w
x.parent = w

• At the conclusion of the algorithm, for each vertex v: 
• v.cost is the cost of the shortest path from the origin to v
• if v.cost is infinity, there is no path from the origin to v
• starting at v and following the parent references yields 

the shortest path

Evolution of the cost estimates (costs in bold have been finalized):

Example: Shortest Paths from Concord

39

44

83

4942

185

134

63

84

74
54

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

197197197197197infinfAlbany
7474infBoston

0Concord
290290290infinfinfinfinfNew York

848484infPortland
123123128146infinfPortsmouth

105105105infinfProvidence
63infWorcester

Note that the Portsmouth estimate was improved three times!
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Another Example: Shortest Paths from Worcester 

Evolution of the cost estimates (costs in bold have been finalized):

Albany
Boston

Concord
New York
Portland

Portsmouth
Providence
Worcester

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84

74

Implementing Dijkstra's Algorithm

• Similar to the implementation of Prim's algorithm.

• Use a heap-based priority queue to store the unfinalized vertices.

• priority = ? 

• Need to update a vertex's priority whenever we update its 
shortest-path estimate.

• Time complexity = O(ElogV)
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Topological Sort

• Used to order the vertices in a directed acyclic graph (a DAG).

• Topological order: an ordering of the vertices such that, 
if there is directed edge from a to b, a comes before b.

• Example application: ordering courses according to prerequisites

• a directed edge from a to b indicates that a is a prereq of b

• There may be more than one topological ordering.

MATH E-10

CSCI E-160

CSCI E-119CSCI E-50b

MATH E-104

CSCI E-215

CSCI E-162

CSCI E-170

CSCI E-124

CSCI E-220

CSCI E-234

CSCI E-251

CSCI E-50a

Topological Sort Algorithm

• A successor of a vertex v in a directed graph = a vertex w such 
that (v, w) is an edge in the graph    ( )

• Basic idea: find vertices with no successors and work backward.

• there must be at least one such vertex.  why? 

• Pseudocode for one possible approach:
topolSort

S = a stack to hold the vertices as they are visited
while there are still unvisited vertices

find a vertex v with no unvisited successors
mark v as visited
S.push(v)

return S

• Popping the vertices off the resulting stack gives 
one possible topological ordering.

wv
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Topological Sort Example

MATH E-10

CSCI E-160

CSCI E-119CSCI E-50b

MATH E-104

CSCI E-215

CSCI E-162

CSCI E-124

CSCI E-50a

Evolution of the stack:

push stack contents (top to bottom)
E-124 E-124
E-162 E-162, E-124
E-215 E-215, E-162, E-124
E-104 E-104, E-215, E-162, E-124
E-119 E-119, E-104, E-215, E-162, E-124
E-160 E-160, E-119, E-104, E-215, E-162, E-124
E-10 E-10, E-160, E-119, E-104, E-215, E-162, E-124
E-50b E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124
E-50a E-50a, E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124

one possible topological ordering

Another Topological Sort Example

Evolution of the stack:

push stack contents (top to bottom)

C

F

B

D

HG

A

E
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Traveling Salesperson Problem (TSP)

• A salesperson needs to travel to a number of cities to visit clients, 
and wants to do so as efficiently as possible.

• A tour is a path that: 

• begins at some starting vertex

• passes through every other vertex once and only once

• returns to the starting vertex

• TSP: find the tour with the lowest total cost

York

Oxford

London

Cambridge

Canterbury

180

132 62105

20362

55

155
95

257

TSP for Santa Claus

• Other applications:

• coin collection from phone booths

• routes for school buses or garbage trucks
• minimizing the movements of machines in automated 

manufacturing processes 

• many others

source: http://www.tsp.gatech.edu/world/pictures.html

A “world TSP” with
1,904,711 cities. 

The figure at right 
shows a tour with 

a total cost of
7,516,353,779 

meters – which is 
at most 0.068% 
longer than the 

optimal tour.
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Solving a TSP: Brute-Force Approach

• Perform an exhaustive search of all possible tours.

• represent the set of all possible tours as a tree

• The leaf nodes correspond to possible solutions.
• for n cities, there are (n – 1)! leaf nodes in the tree.
• half are redundant (e.g., L-Cm-Ct-O-Y-L = L-Y-O-Ct-Cm-L)

• Problem: exhaustive search is intractable for all but small n.
• example: when n = 14, ((n – 1)!) / 2 = over 3 billion

Cm Ct O Y

Ct O Y Cm O Y Cm Ct Y Cm Ct O

Y O Y Ct O Ct Y O Y Cm O Cm Y Ct Y Cm Ct Cm O Ct O Cm Ct Cm

L

L L L L L L L L L L L L L L L L L L L L L L L L

O Y Ct Y Ct O O Y Cm Y Cm O Ct Y Cm Y Cm Ct Ct O Cm O Cm Ct

Solving a TSP: Informed Search

• Focus on the most promising paths through the tree 
of possible tours.

• use a function that estimates how good a given path is

• Better than brute force, but still exponential space and time.
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Algorithm Analysis Revisited

• Recall that we can group algorithms into classes (n = problem size):
name example expressions big-O notation
constant time 1, 7, 10 O(1)
logarithmic time 3log10n, log2n + 5 O(log n)
linear time 5n, 10n – 2log2n O(n)
n log n time 4n log2n, n log2n + n O(n log n)
quadratic time 2n2 + 3n, n2 – 1 O(n2)
nc (c > 2) n3 - 5n, 2n5 + 5n2 O(nc)
exponential time 2n, 5en + 2n2 O(cn)
factorial time (n – 1)!/2, 3n! O(n!)

• Algorithms that fall into one of the classes above the dotted line 
are referred to as polynomial-time algorithms.

• The term exponential-time algorithm is sometimes used 
to include all algorithms that fall below the dotted line.

• algorithms whose running time grows as fast or faster than cn

Classifying Problems

• Problems that can be solved using a polynomial-time algorithm 
are considered “easy” problems. 

• we can solve large problem instances in a 
reasonable amount of time

• Problems that don’t have a polynomial-time solution algorithm 
are considered “hard” or "intractable" problems.

• they can only be solved exactly for small values of n

• Increasing the CPU speed doesn't help much for 
intractable problems:

CPU 2
CPU 1 (1000x faster)

max problem size for O(n) alg: N 1000N
O(n2) alg: N   31.6 N
O(2n) alg: N N + 9.97
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Dealing With Intractable Problems

• When faced with an intractable problem, we resort to 
techniques that quickly find solutions that are "good enough".

• Such techniques are often referred to as heuristic techniques.
• heuristic = rule of thumb
• there's no guarantee these techniques will produce 

the optimal solution, but they typically work well

Take-Home Lessons

• Object-oriented programming allows us to capture the
abstractions in the programs that we write.

• creates reusable building blocks

• key concepts: encapsulation, inheritance, polymorphism

• Abstract data types allow us to organize and manipulate 
collections of data.

• a given ADT can be implemented in different ways

• fundamental building blocks: arrays, linked nodes

• Efficiency matters when dealing with large collections of data.

• some solutions can be much faster or more space efficient 

• what’s the best data structure/algorithm for your workload?

• example: sorting an almost sorted collection
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Take-Home Lessons (cont.)

• Use the tools in your toolbox!

• interfaces, generic data structures

• lists/stacks/queues, trees, heaps, hash tables

• recursion, recursive backtracking, divide-and-conquer

• Use built-in/provided collections/interfaces:
• java.util.ArrayList<T> (implements List<T>)

• java.util.LinkedList<T> (implements List<T> and Queue<T>)

• java.util.Stack<T>

• java.util.TreeMap<K, V> (a balanced search tree)

• java.util.HashMap<K, V> (a hash table)

• java.util.PriorityQueue<T> (a heap)

• But use them intelligently!

• ex: LinkedList maintains a reference to the last node in the list

• list.add(item, n) will add item to the end in O(n) time

• list.addLast(item) will add item to the end in O(1) time! 

implement 
Map<K, V>
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