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CSCI E-22

Introduction: Course Overview,
Java Review

Computer Science E-22/S-22
Harvard Extension School

David G. Sullivan, Ph.D.

Welcome to Computer Science E-22/S-22!

We will study fundamental data structures.

» ways of imposing order on a collection of information
» sequences: lists, stacks, and queues

+ trees

* hash tables

» graphs

We will also:
» study algorithms related to these data structures
+ learn how to compare data structures & algorithms

Goals:

* learn to think more intelligently about programming problems
* acquire a set of useful tools and techniques

Harvard Extension School




CSCI E-22

Sample Problem I: Finding Shortest Paths

» Given a set of routes between pairs of cities, determine the
shortest path from city A to city B.

ga _ PORTLAND 49

CONCORD 74 o3 PORTSMOUTH

N><OLS4

ALBANY—2— WORCESTER—%4___ BOSTON
42

49
PROVIDENCE
NEW YORK 185

Sample Problem |I: A Data "Dictionary"

» Given a large collection of data, how can we arrange it
so that we can efficiently:

* add a new item
+ search for an existing item

» Some data structures provide better performance than others
for this application.

* More generally, we'll learn how to characterize the efficiency
of different data structures and their associated algorithms.

Harvard Extension School
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Prerequisites

» A good working knowledge of Java
» comfortable with object-oriented programming concepts
» comfortable with arrays
* some prior exposure to recursion would be helpful

« if your skills are weak or rusty, you may want to consider
first taking CSCI E-10b

» Reasonable comfort level with mathematical reasoning

* mostly simple algebra, but need to understand
the basics of logarithms (we’ll review this)

+ will do some simple proofs

Requirements

» Lectures

» Sections
+ optional but highly recommended
+ start this week
» on Zoom; one section will be recorded

» Five problem sets
» plan on 10-20 hours per week!
» code in Java
* must be your own work
« see syllabus for the collaboration policy
» grad-credit students will do extra problems

+ Midterm exam

» Final exam

Harvard Extension School
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Additional Administrivia

» Instructor: Dave Sullivan
+ TAs: see website mentioned below

« Office hours and contact info. will be available on the Web:
https://cscie22.sites.fas.harvard.edu

» For questions on content, homework, etc.:
» use Ed Discussion on Canvas
» send e-mail to cscie22-staff@lists.fas.harvard.edu

Review: What is an Object?

* An object groups together:

« one or more data values (the object's fields — also known as
instance variables)

+ a set of operations that the object can perform
(the object's methods)

* In Java, we use a class to define a new type of object.
» serves as a "blueprint” for objects of that type
» simple example:

public class Rectangle {
/7 fields
private int width;
private int height;

s/ methods
public int getwidth() {
return this.width;

’

Harvard Extension School
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Class vs. Object

The Rectangle class is a blueprint:

public class Rectangle {
// fields
private int width;
private int height;

// methods

Rectangle objects are built according to that blueprint:

width width
height [12 width height
height

(You can also think of the methods as being inside the object,
but we won’t show them in our diagrams.)

Creating and Using an Object

We create an object by using the new operator and
a special method known as a constructor.

Rectangle rl = new Rectangle(10, 30);

Once an object is created, we can call one of its methods
by using dot notation:

int widthl = rl.getwidth();

The object on which the method is invoked is known as
the called object or the current object.

Harvard Extension School




Two Types of Methods

» Methods that belong to an object are referred to as
instance methods or non-static methods.

» they are invoked on an object
int widthl = rl.getwidth(Q;
+ they have access to the fields of the called object

» Static methods do not belong to an object — they belong
to the class as a whole.

» they have the keyword static in their header:
public static int max(int numl, int num2) {

+ they do not have access to the fields of the class
» outside the class, they are invoked using the class name:
int result = Math.max(5, 10);

Encapsulation

» Our classes should provide proper encapsulation.

+ We limit direct access to the internals of an object
by making the fields private:
public class Rectangle {

private int width;
private int height;

» private components of a class can only be accessed
directly by code within the class itself

» We provide limited indirect access through methods
that are labeled public.

public int getwidth() {
return this.width;

3
» publ1ic components can be accessed anywhere

CSCI E-22 Harvard Extension School
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Encapsulation (cont.)

« getwidth() is an accessor method that can be used to
obtain information about an object, but not to change it:
public int getwidth() {
return this.width;

}

+ we use the keyword this to access the fields and methods
that are inside the called object

» A class can also provide mutator methods that change the
called object, but only in appropriate ways:
public void setwidth(int newwidth) {
if (newwidth <= 0) {
throw new I1legalArgumentException();

}
this.width = newwidth;

}

» throwing an exception prevents an inappropriate change
by ending the method prematurely

Inheritance

» We can define a class that explicitly extends another class:

public class Animal {
private String name;
// other field definitions go here

public String getName() {
return this.name;

}

// other method definitions go here

}

public class Dog extends Animal {

* We say that bog is a subclass of Animal, and Animal is a
superclass of Dog.

* A class inherits the fields and methods of the class that it extends.

Harvard Extension School
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The Object Class

If a class does not explicitly extend another class, it implicitly
extends Java's Object class.

The object class includes methods that all classes must
possess. For example:

» toString(): returns a string representation of the object
« equals(): is this object equal to another object?

The process of extending classes forms a hierarchy of classes,
with the object class at the top of the hierarchy:

Object

Rectangle ||String| Animal

*
|Ant||Cat| Dogl

Polymorphism

An object can be used wherever an object of one of its
superclasses is called for.

For example:
Animal a = new Dog();

Animal[] zoo = new Animal[100];
zoo[0] = new Ant(Q);
zoo[1] = new Cat(Q);

The name for this capability is polymorphism.
» from the Greek for "many forms"
» the same code can be used with objects of different types

Harvard Extension School




A Bag Data Structure

» Abag is just a container for a group of data items.
* analogy: a bag of candy

» The positions of the data items don’t matter (unlike a sequence).
* {3, 2,10, 6} is equivalent to {2, 3, 6, 10}

» The items do not need to be unique (unlike a set).
« {7,2,10,7, 5} isn’t a set, butitis a bag

A Bag Data Structure (cont.)

» The operations we want our bag to support:
» add(item): add itemto the bag

» remove (item): remove one occurrence of itenm (if any)
from the bag

» contains(item): check if itemis in the bag
« numItems(): getthe number of items in the bag

» grab(): get an item at random, without removing it
« reflects the fact that the items don’t have a position
(and thus we can’t say "get the 5" item in the bag")

« toArray(): get an array containing the current contents
of the bag

CSCI E-22 Harvard Extension School



CSCI E-22

Implementing a Bag Using a Class

To implement our bag data structure, we define a class:

public class ArrayBag {
private Object[] items;
private int numItems;

// constructors go here

public boolean add(Object item) {

}

Each object of this class will represent an entire bag of items.

The items themselves are stored in an array of type object.
» allows us to store any type of object in the bag,
thanks to the power of polymorphism:

ArrayBag bag = new ArrayBag();
bag.add("hello");
bag.add(new Rectangle(20, 30));

Memory Management: Looking Under the Hood

To understand how data structures are implemented,
you need to understand how memory is managed.

There are three main types of memory allocation in Java.

They correspond to three different regions of memory.

Harvard Extension School
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Memory Management, Type I: Static Storage

» Static storage is used for class variables, which are declared
outside any method using the keyword static:

public class MyMethods {
public static int numCompares;
public static final double PI = 3.14159;

» There is only one copy of each class variable.
» shared by all objects of the class
» Java's version of a global variable

» The Java runtime allocates memory for class variables
when the class is first encountered.

+ this memory stays fixed for the duration of the program

Memory Management, Type |l: Stack Storage

» Method parameters and local variables are stored in a region
of memory known as the stack.

» For each method call, a new stack frame is added to the top
of the stack.

pubTlic class Foo {
public static int x(int i) {

int 3= - 2; J[_*
if (1 >=6) { i 8 x(8)
return i; // return 8
} return addr
return x(i + j); j 3
3 .
public static void i 5 x(5)
main(string[] args) { return addr

System.out.printin(x(5));
} args — 1>

}

* When a method completes, its stack frame is removed.

Harvard Extension School
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Memory Management, Type lll: Heap Storage

Objects (including arrays) are stored in a region of memory
known as the heap.

Memory on the heap is allocated using the new operator:

int[] values = new int[3];
ArrayBag b = new ArrayBag(Q);

new returns the memory address of the start of the object.

This memory address — which is referred to as a reference —

is stored in the variable that represents the object:
0x23a

values|0x23a] [0 T o [ o |

We will often use an arrow to represent a reference:

values | ___4___4 o [ o] o]

Heap Storage (cont.)

An object remains on the heap until there are no remaining
references to it.

Unused objects are automatically reclaimed by a process
known as garbage collection.

* makes their memory available for other objects

Harvard Extension School



Two Constructors for the ArrayBag Class

public class ArrayBag {
private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;
public ArrayBag(int maxsize) {
, -

* A class can have multiple constructors.
+ the parameters must differ in some way

* The first one is useful for small bags.
» creates an array with room for 50 items.

* The second one allows the client to specify the max # of items.

Two Constructors for the ArrayBag Class

public class ArrayBag {
private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;

public ArrayBag(int maxSize) {
if (maxSize <= 0) {
throw new ITlegalArgumentException(
) "maxSize must be > 0");
this.items = new Object[maxSize];
this.numItems = 0;

}

» If the user inputs an invalid maxsize, we throw an exception.

Harvard Extension School
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Example: Creating Two ArrayBag Objects

// client

public static void main(string[] args) {
ArrayBag bl = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);

// constructor

public ArrayBag(int maxSize) {
. // error-checking
this.items = new Object[maxSize];
this.numItems = 0;

stack heap } // returns
b2
b1 — |
args :
9 ::ij‘\k‘\‘ﬁ\‘ﬁ‘i;aﬁﬁf —F—» null [ null|
numItems| 0

Example: Creating Two ArrayBag Objects

// client

public static void main(string[] args) {
ArrayBag bl = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);

// constructor
} public ArrayBag(int maxSize) {
. // error-checking
this.items = new Object[maxSize];
this.numItems = 0;
stack heap } // returns
items —]
naxsize [ ] nul1 [ null [ null | null]
——— | numItemg| O
b2 ——
b1] — |
args . .
g L item —]—» null [ null|
numItems| 0

Harvard Extension School



Example: Creating Two ArrayBag Objects

// client

public static void main(string[] args) {
ArrayBag bl new ArrayBag(2);
ArrayBag b2 new ArrayBag(4);

}
» After the objects have been created, here’s what we have:
stack heap
items| ——{null [ null[null]| null]
| numItemg| O
b2 ——
b1] —} |
args .
9 ::““‘EEN““‘iFaiﬁf —t— nul11 | null|
'” numItems| 0

Copying References

» A variable that represents an array or object is known as a
reference variable.

+ Assigning the value of one reference variable to another
reference variable copies the reference to the array or object.
It does not copy the array or object itself.

int[] values = {5, 23, 61, 10};
int[] other = values;

other
values| —}—3] 5 [ 23 [ 61 ] 10 |

» Given the lines above, what will the lines below output?

other[2] = 17;
System.out.printin(values[2] + " " + other[2]);

CSCI E-22 Harvard Extension School
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Passing an Object/Array to a Method

» When a method is passed an object or array as a parameter,

the method gets a copy of the reference to the object or array,
not a copy of the object or array itself.

» Thus, any changes that the method makes to the internals

of the object/array will still be there when the method returns.

» Consider the following:

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);

) System.out.printin(Arrays.toString(a));

public static void triple(int[] n) {

for (int i = 0; i < n.length; i++) {
n[i] = n[i] * 3;
}
}
What is the output?

Passing an Object/Array to a Method (cont.)

before method call

public static void main(string[] args) {
int[] a = {1, 2, 3};
triple(a);

y System.out.println(...);

during method call

triple triple

main

:

7
l
/-

main
a

o 3

after method call

main

(]

Harvard Extension School




CSCI E-22

Adding Items to an ArrayBag

We fill the array from

left to right. Here's an empty bag:

items —

L nul1| null | null| null|

numItems 0

After adding the first item:

items

—]— [ null | null| null|

numItems 1

e

["hello, world"|

After adding the second item:

items[ —}—»] [\ [null]null}
numItems 2
["helTo, world"] [ "howdy" |
Adding Items (cont.)
+ After adding the third item:
items| —f—» L [ ~\Lnuil]

numItems 3

d

["hello, world"] [ "howdy” | ["bye"]

After adding the fourth item:

items —

NN

numItems 4

|
["hello, world"] | "howdy" | |"bye"||"see ya!"|

At this point, the ArrayBag is full!

* it's non-trivial to "g

row" an array, so we don't!

» additional items cannot be added until one is removed

H

arvard Extension School
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A Method for Adding an ltem to a Bag

public class ArrayBag {
private Object[] items;

! - + takes an object of any type!
private int numItems;

* returns a boolean to
indicate if the operation

public boolean add(object item) {  gucceeded

if (Gitem == null) {
throw new IllegalArgumentException('"'no nulls");

} else if (this.numItems == this.items.length) {
return false; // no more room!
} else {

this.items[this.numItems] = item;
this.numItems++;
return true; // success!

}
* Initially, this.numItems is O, so the first item goes in position O.

* We increase this.numItems because we now have 1 more item.
* and so the next item added will go in the correct position!

Example: Adding an ltem (cont.)

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

b.add(message); o 113¢ boolean add(object item) {
else {
this.items[this.numItems] = item;
this.numItems++;
return true;
stack heap
this items ——{null [ nul1 | null| null]
item | numItems 0
b //ﬁ "hello, world" ]
message| — |
args >

« add's stack frame includes:

« 1item, which stores a copy of the reference passed as a param.
» this, which stores a reference to the called ArrayBag object

Harvard Extension School



Example: Adding an ltem

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

b.add(message); [ 93 pboolean add(object item) {
else {
this.items[this.numItems] = item;
this.numItems++;
return true;
.
stack heap
this items| —1—— , [null|null| null]
item — numItems| 1

b '/”/’iiijjfEE;;;I"he11o, world" |

message| —
args >

* The method modifies the items array and numItems.
* note that the array holds a copy of the reference to the item,
not a copy of the item itself.

Example: Adding an Iltem

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

P.add(message); public boolean add(Object item) {
else {
this.items[this.numItems] = item;
this.numItems++;
return true;
stack heap
items[ —}—»] [null [ null | nult]
numItems 1
bl —17 1  »["hello, world"]
message| —f |
args >

» After the method call returns, add's stack frame is removed
from the stack.

CSCI E-22 Harvard Extension School
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A Type Mismatch

« Here are the headers of two ArrayBag methods:

public boolean add(Object item)
public oObject grab()

» Polymorphism allows us to pass String objects into add():

ArrayBag stringBag = new ArrayBag();
stringBag.add("hello");
stringBag.add("world");

» However, this will not work:
String str = stringBag.grab(Q); // compiler error
« the return type of grab() is object
+ Object isn’t a subclass of string, so polymorphism doesn't help!

* Instead, we need to use a type cast:
String str = (String)stringBag.grabQ);
« this cast doesn't actually change the value being assigned
« it just reassures the compiler that the assignment is okay

Extra Practice: Determining if a Bag Contains an ltem

items __’l | \ | |nu'|1 |nu1'| |nu'|'| | null |

numItems 3 / \ \

["hello, wor1d™] ["oh my!"| ["what's in the bag?"|

» Let’s write the ArrayBag contains() method together.

» should return true if an object equal to itemis found,
and false otherwise.

contains( item) {

Harvard Extension School
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Would this work instead?

items| ——s L\ | nu11 [ null [ nul1 | nu1t .
numItems| 3 / \ \
["heT1To, worTd™] ["oh my!"| ["what's in the bag?"|

+ Let's write the ArrayBag contains() method together.

* should return true if an object equal to itemis found,
and false otherwise.

public boolean contains(Object item) {
for (int i = 0; i < this.items.length; i++) {
if (this.items[i].equals(item)) { // not ==
return true;
}

}

return false;

Another Incorrect contains () Method

public boolean contains(Object item) {
for (int i = 0; i < this.numItems; i++) {
if (this.items[i].equals(item)) {
return true;
} else {
return false;
}
3
return false;

}
* What's the problem with this?

Harvard Extension School
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Recursion and
Recursive Backtracking

Computer Science E-22
Harvard Extension School

David G. Sullivan, Ph.D.

lteration

When we encounter a problem that requires repetition,
we often use iteration — i.e., some type of loop.

Sample problem: printing the series of integers from
n1 to n2, where n1 <= n2.

* example: printseries(5, 10) should print the following:

5,6, 7, 8,9, 10

Here's an iterative solution to this problem:

pubTlic static void printSeries(int nl, int n2) {
for (int i = nl; i < n2; i++) {
System.out.print(i + ", ");
ks

System.out.println(n2);

Harvard Extension School
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Recursion

An alternative approach to problems that require repetition
is to solve them using recursion.

A recursive method is a method that calls itself.

Applying this approach to the print-series problem gives:

public static void printSeries(int nl, int n2) {
if (nl == n2) {
System.out.println(n2);
} else {
System.out.print(nl + ", ");

printSeries(nl + 1, n2);

Tracing a Recursive Method

pubTic static void printSeries(int nl, int n2) {
if (n1 == n2) {
System.out.println(n2);
} else {
System.out.print(nl + ", ");
printSeries(nl + 1, n2);

}

What happens when we execute printSeries(5, 7)?

printSeries(5, 7):
Ssystem.out.print(5 + ", ");
printSeries(6, 7):

System.out.print(6 + ", ");
printSeries(7, 7):
System.out.print(7);
return
return
return

Harvard Extension School
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Recursive Problem-Solving

When we use recursion, we solve a problem by reducing it
to a simpler problem of the same kind.

We keep doing this until we reach a problem that is
simple enough to be solved directly.

This simplest problem is known as the base case.

public static void printSeries(int nl, int n2) {

if (nl == n2) { // base case
System.out.printin(n2);

} else {
System.out.print(nl + ", ");

printSeries(nl + 1, n2);

}

The base case stops the recursion, because it doesn't
make another call to the method.

Recursive Problem-Solving (cont.)

If the base case hasn't been reached, we execute the
recursive case.

public static void printSeries(int nl, int n2) {

if (n1 == n2) { // base case
System.out.printin(n2);

} else { // recursive case
System.out.print(nl + ", ");

printseries(nl + 1, n2);

The recursive case:

* reduces the overall problem to one or more simpler problems

of the same kind
* makes recursive calls to solve the simpler problems

Harvard Extension School
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Structure of a Recursive Method

recursiveMethod(parameters) {
if (stopping condition) {
// handle the base case
} else {
// recursive case:
// possibly do something here

recursiveMethod(modified parameters);

// possibly do something here
}
» There can be multiple base cases and recursive cases.

* When we make the recursive call, we typically use parameters
that bring us closer to a base case.

Tracing a Recursive Method: Second Example

pubTlic static void mystery(int i) {
if (0 <= 0) { // base case
return;
}

// recursive case

System.out.printin(i);

mystery(i - 1);

System.out.printin(i);
}

* What happens when we execute mystery(2)?

Harvard Extension School
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A Recursive Method That Returns a Value

Simple example: summing the integers from 1 to n

pubTic static int sum(int n) {
if (n <= 0) {
return 0;
}

int rest = sum(n - 1);
return n + rest;

}

Example of this approach to computing the sum:
sum(6) 6 + sum(5)
6 +5+sum(4)

Tracing a Recursive Method

pubTic static int sum(int n) {
if (n <= 0) {
return 0;
}

int rest = sum(n - 1);
return n + rest;

}

What happens when we execute int x = sum(3);
from inside the main() method?

main() calls sum(3)
sum(3) calls sum(2)
sum(2) calls sum(1)
sum(l) calls sum(0)
sum(0) returns O
sum(1l) returns 1 + O or 1
sum(2) returns 2 + 1 or 3
sum(3) returns 3 + 3 or 6
main() assigns 6 to X

Harvard Extension School
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Tracing a Recursive Method on the Stack

public static int sum(int n) {

if (n <= 0) {
return O; )
} ’ The final result
int rest = sum(n - 1); gets built up
return n + rest; on the way back
} from the base case!
base case
Example: sum(3) n[o]
rest[ |
return 0 — rest = sum(0)
n(1] n(1] n(1] =0
rest[ | rest[ | res
return 1+0 7
n[2] n[2] n[2] n[2] n[2]
rest[ | rest[ | rest[ | rest[_ ||| rest
return 2+1-
n[3] n[3] n[3] n[3] n[3] n[3] (3]
restl_ || rest[ ] rest[ | rest[ | restl_J|| rest[ ] rest
return 3+3
time ——» final result: 6

Infinite Recursion

* We have to ensure that a recursive method will eventually
reach a base case, regardless of the initial input.

» Otherwise, we can get infinite recursion.

» produces stack overflow - there's no room for
more frames on the stack!

« Example: here's a version of our sum() method that uses
a different test for the base case:

public static int sum(int n) {
if (n == 0) {
return O;
b

int rest = sum(n - 1);
return n + rest;

}

« what values of n would cause infinite recursion?

Harvard Extension School
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Designing a Recursive Method

1. Start by programming the base case(s).

* What instance(s) of this problem can | solve directly
(without looking at anything smaller)?

2. Find the recursive substructure.

* How could I use the solution to any smaller version
of the problem to solve the overall problem?

3. Solve the smaller problem using a recursive call!
 store its result in a variable

4. Do your one step.
* build your solution from the result of the recursive call
» use concrete cases to figure out what you need to do

Processing a String Recursively

* A string is a recursive data structure. It is either:
° empty (llll)
+ a single character, followed by a string

» Thus, we can easily use recursion to process a string.
» process one or two of the characters ourselves
* make a recursive call to process the rest of the string

« Example: print a string vertically, one character per line:

public static void printvertical(String str) {
if (str == null || str.equals("")) {
return;
3

System.out.printin(str.charAt(0)); // first char
printvertical(str.substring(1)); // rest of string

Harvard Extension School 29



Short-Circuited Evaluation

» The second operand of both the & and | | operators
will not be evaluated if the result can be determined on the
basis of the first operand alone.

e exprl || expr2
if exprl evaluates to true, expr2 is not evaluated,
because we already know that exprl || expr2is true
» example from the last slide:

if (str == null || str.equals("")) {
return;
3

// if str is null, we won't check for empty string.

// This prevents a null pointer exception!

e exprl && expr2
if exprl evaluates to , expr2 is not evaluated,
because we already know that exprl && expr2is

Counting Occurrences of a Character in a String

e numoccur(c, s) should return the number of times that
the character c appears in the string s

e« numoccur('n', "banana") should return 2
e« numoccur('a', "banana") should return 3

» Take the approach outlined earlier:
» base case: empty string (or null)
» delegate s.substring(1) to the recursive call
» we're responsible for handling s.charAat(0)
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Recursive Counting

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {
int rest = numOccur(c, s.substring(l));
// do our one step!

Determining Our One Step

pubTlic static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {
int rest = numoccur(c, s.substring(l));
// do our one step!

* In our one step, we take care of s.charAt(0).

» we build the solution to the larger problem on the
solution to the smaller problem (in this case, rest)

» does what we do depend on the value of s.charAt(0)?

+ Use concrete cases to figure out the logic!
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Consider this concrete case...

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {
int rest = numOccur(c, s.substring(l));
// do our one step!

numoccur('r', "recurse")

What value is eventually assigned to rest?
(i.e., what does the recursive call return?)

pubTlic static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {
int rest = numOccur(c, s.substring(l));
// do our one step!

numoccur('r', "recurse")
numOccur('r', "recurse™)
c="r", s = "recurse"

int rest = ?77?

Harvard Extension School
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Consider Concrete Cases

numoccur('r', "recurse') # first char is a match

* whatis its solution?
+ what is the next smaller subproblem?
+ what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

numoccur('a', "banana") # first char is not a match

» whatis its solution?
+ what is the next smaller subproblem?
» what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

Now complete the method!

pubTlic static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {

int rest = numoccur(c, s.substring(l));
if (s.charAt(0) == c) {

return
} else {

return

Harvard Extension School

33



Tracing a Recursive Method on the Stack

public static int numoccur(char c, String s) {
if (s == null || s.equals("")) {

return 0O;
} else { ,
int rest = numoccur(c, s.substring(l)); The fmall result
if (s.charAt(0) == ©) { gets built up
return 1 + rest; on the way back
} else {

|
return rest; from the base case

}

} base case
} S
numoccur('a', "aha") rest| |
return 0 —
s[ "a" s[ "a" SE
rest rest re! 0
return 1+0+
s["ha"] s["ha" s["ha" s["ha" s["ha"]
restf ||| rest rest rest rest
return 1
s sl'ahall sf'ahal sf'ahal sfaha'| sfaha] sfaha]
resti ||| rest| ||| rest rest rest rest ||| res

return 1+1

tme — »

Common Mistake

* This version of the method does not work:

public static int numoccur(char c, String s) {
if (s == null || s.equals("™)) {
return 0;
3

int count = 0O;
if (s.charAt(0) == c) {
count++;

}

numoccur(c, s.substring(l));
return count;
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Another Faulty Approach

Some people make count "global" to fix the prior version:
public static int count = 0;

public static int numoccur(char c, String s) {
if (s == null || s.equals("")) {

return O;

3

if (s.charAt(0) == o) {
count++;

3

numoccur(c, s.substring(l));
return count;

}

Not recommended, and not allowed on the problem sets!

Problems with this approach?

Removing Vowels From a String

« removevVowels(s) - removes the vowels from the string s,

returning its "vowel-less" version!

removevowels("recursive") should return "rcrsv"

removevowels("vowel") should return "vwl"

Can we take the usual approach to recursive string processing?
* base case: empty string

* delegate s.substring(1) to the recursive call

» we're responsible for handling s.charat(0)
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Applying the String-Processing Template
public static String removevowels(String s) {
if (s.equals("™)) { // base case

return ;
} else { // recursive case

String rem_rest =
// do our one step!

Consider Concrete Cases

removevowels("after") # first char is a vowel
+ what is its solution?
» what is the next smaller subproblem?
» what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

removevowels("recurse") # first char is not a vowel
» what is its solution?
» what is the next smaller subproblem?
+ what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

Harvard Extension School




CSCI E-22

removevowels ()

public static String removevowels(String s) {

if (s.equals("™)) { // base case
return "";
} else { // recursive case
String rem_rest = removevowels(s.substring(1));
if (Maeiou".indexof(s.charAat(0)) != -1) {
} else {
}
}

The n-Queens Problem

» Goal: to place n queens on an n x n chessboard
so that no two queens occupy:

» the same row
» the same column
» the same diagonal.

» Sample solution for n = 8: Q

Q

» This problem can be solved using a technique called
recursive backtracking.
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Recursive Strategy for n-Queens

+ findsolution(row) — to place a queen in the specified row:
+ try one column at a time, looking for a "safe" one
 if we find one: — place the queen there
— make a recursive call to go to the next row

+ if we can’t find one: — backtrack by returning from the call
— try to find another safe column
in the previous row

+ Example: 5
* row O:
col 0: safe
« row 1: |[] Q) Q
Q Q Q
U \)
col 0: same col  col 1: same diag col 2: safe
4-Queens Example (cont.)
* row 2: [[q] Q O Kol [[] Q
Q Q/ Q Q
Q Y Q Q)
U 9 Y

col 0: same col  col 1: same diag col 2: same col/diag col 3: same diag

* We've run out of columns in row 2!

» Backtrack to row 1 by returning from the recursive call.

* pick up where we left off

» we had already tried columns 0-2, so now we try column 3:
Q Q

we left offin col 2 try col 3: safe

» Continue the recursion as before.

CSCI E-22 Harvard Extension School
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4-Queens Example (cont.)

row 2: |fq) Q
Q Q
Q Q
Z) 0: same col col 1: safe
row 3: [ 2188 Q Q] M
& CIANEE a
Q Q Q Q
Q Q N 9

col 0: same col/diag col 1: same col/diag col 2: same diag col 3: same col/diag

Backtrack to row 2:

Q QY Q []

Q S Q
K Q
CAN U

we left offin col 1 col 2: same diag ~ col 3: same col

Backtrack to row 1. No columns left, so backtrack to row 0!

4-Queens Example (cont.)

row O: Q
row 1: 3 Q) @ a
Q Q Q Q
)
row 2: &
Q
Q
row 3: [Mq a Q
Q ) Q
Q @R\ Q
o] Q Q

A solution!
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A Blueprint Class for an N-Queens Solver

pubTlic class NQueens {
private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

» Here's what the object

|fa1se| false |fa1se |fa1se

looks like initially:

NQueens object

|fa1se| false |fa1se |Fa1se

board | __4____>| //T //T'__+——(j""|fa1se| false |fa1se |fa1se

//other fields

|fa1se| false |fa1se |fa1se

A Blueprint Class for an N-Queens Solver

public class NQueens {
private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

private void placeQueen(int row, int col) { Q
this.board[row][col] = true; Q
// modify other fields here...

» Here's what it looks like

| true |fa1se |fa1se| false

after placing some queens:

. |fa1se| fa1se| fa1se| true
NQueens object

board | __F___>| //I //T’_,f—”r”'|fa1se| true |fa1se| false

//other fields

|fa1se| false |fa1se |fa1se
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A Blueprint Class for an N-Queens Solver

pubTlic class NQueens {
private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

}

privatg void placeQueen(int row, int col) {
this.board[row] [col] = true; private helper methods
// modify other fields here... that will only be called

by code within the class.

private void removeQueen(int row, int col){ wakingthem private
this.board[row][col] = false; means we don't need
// modify other fields here... to do error-checking!
}

private boolean isSafe(int row, int col) {
// returns true if [row][col] 1is "safe", else false
H

private boolean findSolution(int row) {
// see next slide!

Recursive-Backtracking Method

private boolean findSolution(int row) {
if (row == this.board.length) {
this.displayBoard();
return true;
}
for (int col = 0; col < this.board.length; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) {
return true;
}

this.removeQueen(row, col);

}

return false;

+ takes the index of a row (initially 0)

» uses a loop to consider all possible columns in that row

» makes a recursive call to move onto the next row

» returns true if a solution has been found; false otherwise
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. . . Q
Tracing findSolution() a
private boolean findsolution(int row) { Q
if (row == this.board.length) {
// code to process a solution goes here...
3
for (int col = 0; col < this.board.Tlength; col++) {
if (this.issafe(row, col)) { Note: row++
this.placeQueen(row, col); will not work
if (this.findsolution(row +“1)) { here
return true;
3
this.removeQueen(row, col);
¥ We can pick up backtrack!
return false: where we left off, row: 3
‘backtrackl because row and col:0,1,2,3,4
- —] col are stored in return false
row: 2 |
col:0.1,2,3.4 the stack frame! row: 2 row: 2
return false ¢ col: 0,1 col: 0,1
row: 1 row: 1 row: 1 row: 1 row: 1 row: 1
col: 0,1,2 col: 0,1,2 col: 0,1,2 col: 0,1,2,3 | col: 0,1,2,3 || col: 0,1,2,3
row: 0 row: 0 row: 0 row: 0 row: 0 row: 0 row: 0
col: 0 col: 0 col: 0 col: 0 col: 0 col: 0 col: 0
time —»
. Q
Once we place a queen in the last row... a
private boolean findSolution(int row) { Q
if (row == this.board.length) { Q

this.displayBoard();
return true;
3
for (int col = 0; col < this.board.Tlength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) {
return true;
}

this.removeQueen(row, col);

}
row: 3
return false; |col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

tme —— »
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...we make one more recursive call...

private boolean findsolution(int row) { Q

if (row == this.board.length) {

this.displayBoard();
return true;

for (int col = 0; col < this.board.Tength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) {
return true;

this.removeQueen row: 4

row: 3 row: 3

; return false; |cor0,1,2 col:0,1,2

row: 2 row: 2

col: 0 col: 0

row: 1 row: 1

col: 0,1,2,3 col: 0,1,2,3
row: 0 row: 0

col: 1 col: 1

time —»

...and hit the base case!

private boolean findSolution(int row) { Q

if (row == this.board.length) {

this.displayBoard();
) return true;
for (int col = 0; col < this.board.Tlength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) {
return true;

}
this.removeQueen row: 4 ;
} return true
row: 3 row: 3
return false; |col:0,1,2 col:01.2

row: 2 row: 2
col: 0 col: 0
row: 1 row: 1
col:0,1,2,3 || col: 0,1,2,3
row: 0 row: 0
col: 1 col: 1

tme —— »
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. Q
true is sent back... a
private boolean findsolution(int row) { Q
if (row == this.board.length) { Q
this.displayBoard();
return true;
for (int col = 0; col < this.board.Tength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) { // if (true)
return true;
this.removeQueen row: 4 ;
return true
row: 3 row: 3 row: 3
; return false; |co0,1,2 col:0,1,2 col:0,1,2
row: 2 row: 2 row: 2
col: 0 col: 0 col: 0
row: 1 row: 1 row: 1
col: 0,1,2,3 col: 0,1,2,3 col: 0,1,2,3
row: 0 row: 0 row: 0
col: 1 col: 1 col: 1
time —»
. Q
...and all the earlier calls also return true! a
private boolean findSolution(int row) { Q
if (row == this.board.length) { Q

this.displayBoard();
return true;
}
for (int col = 0; col < this.board.Tlength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) { // if (true)
return true;

}
this.removeQueen row: 4 ;
} return true
row: 3
N £a] row: 3 row: 3 col:0,1,2
return rtalse; |col:0,1,2 col:0,1,2
return true row: 2
row: 2 row: 2 row: 2 col: 0
col: 0 col: 0 col: 0 return true
row: 1 row: 1 row: 1 row: 1
col: 0,1,2,3 col: 0,1,2,3 col: 0,1,2,3 || col: 0,1,2,3
row: 0 row: 0 row: 0 row: 0
col: 1 col: 1 col: 1 col: 1

tme —— »
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Using a "Wrapper" Method

» The key recursive method is private:

private boolean findSolution(int row) {
}

+ We use a separate, public "wrapper” method
to start the recursion:

public boolean findsolution() A
return this.findsolution(0);
}

+ an example of overloading — two methods with
the same name, but different parameters

+ this method takes no parameters

» it makes the initial call to the recursive method
and returns whatever that call returns

« it allows us to ensure that the correct initial value
is passed into the recursive method

Recursive Backtracking in General

» Useful for constraint satisfaction problems

* involve assigning values to variables according to
a set of constraints

* n-Queens: variables = Queen’s position in each row
constraints = no two queens in same row/col/diag

* many others: factory scheduling, room scheduling, etc.

» Backtracking greatly reduces the number of possible solutions
that we consider.

e ex: |o » there are 16 possible solutions that
Q begin with queens in these two positions

« backtracking doesn't consider any of them!

* Recursion makes it easy to handle an arbitrary problem size.
+ stores the state of each variable in a separate stack frame
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Template for Recursive Backtracking

/7 n 1s the number of the variable that the current
s/ call of the method is responsible for
boolean findsolution(int n, possibly other params) {
if (found a solution) {
this.displaysolution();
return true;

}

// loop over possible values for the nth variable
for (val = first to last) { Note: n++
if (this.isvalid(val, n)) { will not work
this.applyvalue(val, n); _ — herel
if (this.findsolution(n + 1, other params)) {
return true;

}
this.removevalue(val, n);
}
}
return false; // backtrack!

Template for Finding Multiple Solutions

(up to some target number of solutions)

boolean findsolutions(int n, possibly other params) {
if (found a solution) {
this.displaySolution(Q);
this.solutionsFound++;
return (this.solutionsFound >= this.target);

}

s/ loop over possible values for the nth variable
for (val = first to last) {
if (isvalid(val, n)) {
this.applyvalue(val, n);
if (this.findsolutions(n+ 1, other params)) {
return true;
3

this.removevalue(val, n);

}

return false;
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Data Structures for n-Queens

Three key operations:

« issafe(row, col):check to see if a position is safe
e placeQueen(row, col)
e removeQueen(row, col)

In theory, our 2-D array of booleans would be sufficient:

pubTic class NQueens {
private boolean[][] board;

It's easy to place or remove a queen:

private void placeQueen(int row, int col) {
this.board[row] [col] = true;
3

private void removeQueen(int row, int col) {
this.board[row] [col] = false;
3

Problem: issafe() takes a lot of steps. What matters more?

Additional Data Structures for n-Queens

To facilitate issafe(), add three arrays of booleans:

private boolean[] colEmpty;
private boolean[] upDiagEmpty;
private boolean[] downDiagEmpty;

An entry in one of these arrays is:
— true if there are no queens in the column or diagonal
— false otherwise

Numbering diagonals to get the indices into the arrays:

upDiag = row + col downDiag =
(boardSize — 1) + row — col
0 3 0 2 3
o [T o [N

N
N
N

AN
Y
D

<
2 2/
&

Y Q
Q

6 3|6

N

@\Awmm

o
N
[$)]

87978751

o
@

w
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Using the Additional Arrays

* Placing and removing a queen now involve updating four
arrays instead of just one. For example:

private void placeQueen(int row, int col) {
this.board[row] [col] = true;
this.colEmpty[col] = false;
this.upDiagEmpty[row + col] = false;
this.downDiagEmpty[
(this.board.Tength - 1) + row - col] = false;
3

* However, checking if a square is safe is now more efficient:

private boolean issafe(int row, int col) {
return (this.colEmpty[col]
&& this.upDiagEmpty[row + col]
&& this.downDiagEmpty[
(this.board.length - 1) + row - col]);

Recursive Backtracking Il: Map Coloring

+ We want to color a map using only four colors.

» Bordering states or countries cannot have the same color.
* example:

not allowed!
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Applying the Template to Map Coloring

boolean findsolution(n, perhaps other params) {
if (found a solution) {
this.displaysolution();
return true;
b
for (val = first to Tast) {
if (this.isvalid(val, n)) {
this.applyvalue(val, n);
if (this.findsolution(n + 1, other params)) {
return true;
}

this.removevalue(val, n);

}

¥ template element | meaning in map coloring

return false;
3 n
found a solution
val
isValid(val, n)
applyValue(val, n)
removeValue(val, n)

Map Coloring Example

consider the states in alphabetical order. colors = { red, , green,

We color Colorado through No color works for Wyoming,
Utah without a problem. so we backtrack...

Colorado:

Idaho:

Kansas

Montana:

Nebraska:

North Dakota:

South Dakota:

Utah:
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Map Coloring Example (cont.)

Now we can complete
the coloring:

Recursion vs. lteration

Some problems are much easier to solve using recursion.

Other problems are just as easy to solve using iteration.

* Recursion is a bit more costly because of the overhead involved
in invoking a method.

* also: in some cases, there may not be room on the stack

Rule of thumb:

« if it's easier to formulate a solution recursively, use recursion,
unless the cost of doing so is too high

 otherwise, use iteration

CSCI E-22 Harvard Extension School
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A First Look at
Sorting and Algorithm Analysis

Computer Science E-22
Harvard Extension School

David G. Sullivan, Ph.D.

Sorting an Array of Integers

1 2 n-2 n-1

0
ar| 15[ 7 [36] -

Ground rules:
» sort the values in increasing order
+ sort “in place,” using only a small amount of additional storage

Terminology:
* position: one of the memory locations in the array
» element: one of the data items stored in the array
* element i: the element at position i

Goal: minimize the number of comparisons C and the number
of moves M needed to sort the array.

* move = copying an element from one position to another
example: arr[3] = arr[5];
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Defining a Class for our Sort Methods

public class Sort {
public static void bubbleSort(int[] arr) {

public static void insertionSort(int[] arr) {

}

» Our sort class is simply a collection of methods like Java’s
built-in math class.

» Because we never create Sort objects, all of the methods in
the class must be static.

» outside the class, we invoke them using the class name:
e.g., sort.bubbleSort(arr)

Defining a Swap Method

+ It would be helpful to have a method that swaps two elements
of the array.

* Why won't the following work?

private static void swap(int a, int b) {
int temp = a;
a=b;
b = temp;
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An Incorrect Swap Method

private static void swap(int a, int b) {
int temp = a;
a b;
b temp;

}

» Trace through the following lines to see the problem:

int[] arr = {15, 7, ..};
swap(arr[0], arr[1]);

stack heap

arr

\\‘| 15 7 [---

A Correct Swap Method

« This method works:
private static void swap(int[] arr, int a, int b) {
int temp = arr[al;
arr[a] = arr[b];
arr[b] = temp;
3

» Trace through the following with a memory diagram to convince
yourself that it works:

int[] arr = {15, 7, ..};
swap(arr, 0, 1);
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Selection Sort

» Basicidea:
+ consider the positions in the array from left to right
 for each position, find the element that belongs there
and swap it with the element that’s currently there

+ Example:
0 1 2 3 4

15/ 6 | 7 |12 3

7

o 1 2 3 4
6 |15|12| 3
\/V

0 1 2 3 4 0 2 3 4
311512 6 1] 3 12|15

—_ v

Why don’t we need to consider position 47

Selecting an Element

* When we consider position 1, the elements in positions
0 through i - 1 are already in their final positions.

0 1 2 3 4 5 6

example for i = 3: 2 |47 (21]|25|10] 17

» To select an element for position 1:

* consider elements i, i+1,1i+2,..,arr.length - 1, and
keep track of indexMmin, the index of the smallest element

seen thus far 0 ; ) 3 . 5 5

indexMmin: 3, 5 2 | 4|7 (2125|1017

* when we finish this pass, indexMin is the index of the
element that belongs in position 1.
* swap arr[i] and arr[indexMin]:
0 1 2 3 4 5 6

2 |4 |7 ]110|25|21 |17
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Implementation of Selection Sort

Use a helper method to find the index of the smallest element:

private static int indexSmallest(int[] arr, int start) {
int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
if (arr[i] < arr[indexmin]) {
indexMin = i;
}
}

return indexMmin;

}

The actual sort method is very simple:

public static void selectionSort(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, i);
swap(arr, i, j);

Time Analysis

Some algorithms are much more efficient than others.

The time efficiency or time complexity of an algorithm is some
measure of the number of operations that it performs.

« for sorting, we’ll focus on comparisons and moves

We want to characterize how the number of operations
depends on the size, n, of the input to the algorithm.

+ for sorting, n is the length of the array
* how does the number of operations grow as n grows?

We'll express the number of operations as functions of n
e C(n) = number of comparisons for an array of length n
» M(n) = number of moves for an array of length n
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Counting Comparisons by Selection Sort

private static int indexSmallest(int[] arr, int start){
int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {

if (arr[i] < arr[indexmin]) {
indexMin = 1i;
}

}

return indexMin;

public static void selectionSort(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, i);
swap(arr, i, j);

}

}

» To sort n elements, selection sort performs n - 1 passes:
on 1st pass, it performs comparisons to find indexsmallest
on 2nd pass, it performs _____ comparisons

on tr'{é (n-1)st pass, it performs 1 comparison

* Addingthemup: ¢c(n) =1 +2 + ..+ (n-2) + (n - 1)

Counting Comparisons by Selection Sort (cont.)

» The resulting formula for c(n) is the sum of an arithmetic

sequence:
n-1
Cn) =1+2+.+M=-2)+ (-1 =)
i-1

» Formula for the sum of this type of arithmetic sequence:

» Thus, we can simplify our expression for C(n) as follows:
n-1

cmy = i
i=1
(- -D+D
h 2

_ (n-21n

5 c(n) = n?f2 -nf2
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Focusing on the Largest Term

« When n is large, mathematical expressions of n are dominated
by their “largest” term — i.e., the term that grows fastest as a
function of n.

« example: n | n2/2 n/2 n2/2 - n/2
10 50 5 45
100 5000 50 4950

10000 50,000,000 5000 49,995,000

 In characterizing the time complexity of an algorithm,
we’ll focus on the largest term in its operation-count expression.

 for selection sort, c(n) =n2/2 -n/2 = n?/2

+ In addition, we’ll typically ignore the coefficient of the largest term
(e.g., n2/2 > n?).

Big-O Notation

» We specify the largest term using big-O notation.
* e.g., wesaythat c(n) =n2/2-n/2 is O(n?)

» Common classes of algorithms:

name example expressions big-O notation
constant time 1,7,10 o
logarithmic time 31ogygn, log,n +5 O(logn)

g linear time 5n, 10n - 210g,n o)

S nlogn time 4nlog,n, nlog,n+n O(nlogn)
quadratic time 2n?+3n,n?2-1 O(n?)
exponential time 2", 5e" + 2n? O(cm

For large inputs, efficiency matters more than CPU speed.

* e.g., an O(log n) algorithm on a slow machine will
outperform an O(n) algorithm on a fast machine
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Ordering of Functions

« We can see below that:  n? grows faster than nlog,n

nlog,n grows faster than n
n grows faster than log,n

160

140 A

120 -

100 -

80 -

60 -

40 4

20 A

—=—n"2
——nlogn
—>—nNn

—*—logn

Ordering of Functions (cont.)

« Zooming in, we see that: nZ2>=nforalln>=1

nlog,n >=nforalln >=2
n > log,n for all n >= 1

—a—n"2
——nlogn
—>—nN

—*—logn
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Big-O Time Analysis of Selection Sort

Comparisons: we showed that c(n) =n2/2-n/2
+ selection sort performs O(n%) comparisons

Moves: after each of the n-1 passes, the algorithm does one swap.
* n-1swaps, 3 moves per swap

* M(n) = 3(n-1) = 3n-3
+ selection sort performs O(n) moves.

Running time (i.e., total operations): ?

Mathematical Definition of Big-O Notation

f(n) = O(g(n)) if there exist positive constants c and n,
such that f(n) <= cg(n) for all n >=n,

« Example: f(n) = n%/2 — n/2 is O(n?), because
n%/2 —n/2 <= n? foralln>=0.

c=1 ny=0

~g(m)=n’

—f(n) = n?%/2 —n/2

P\

n

Big-O notation specifies an upper bound on a function f(n)
as n grows large.
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Big-O Notation and Tight Bounds

Strictly speaking, big-O notation provides an upper bound,
not a tight bound (upper and lower).

Example:
* 3n—3is O(n?) because 3n — 3 <=n2foralln>=1
* 3n-3is also O(2") because 3n — 3 <= 2"for all n >= 1

However, it is common to use big-O notation to characterize

a function as closely as possible — as if it specified a tight bound.

« for our example, we would say that 3n — 3 is O(n)
+ this is how you should use big-O in this class!

Insertion Sort

Basic idea:

» going from left to right, “insert” each element into its proper
place with respect to the elements to its left

» “slide over” other elements to make room

Example:

15| 2 |12] 6

2 | 4 M15]72] 6

2 1 4 "M2|15] 6
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Comparing Selection and Insertion Strategies

* In selection sort, we start with the positions in the array and
select the correct elements to fill them.

* Ininsertion sort, we start with the elements and determine
where to insert them in the array.

» Here’s an example that illustrates the difference:
0 1 2 34 5 6
18112 15| 9 | 25| 2 |17

» Sorting by selection:
» consider position 0: find the element (2) that belongs there
» consider position 1: find the element (9) that belongs there

» Sorting by insertion:
» consider the 12: determine where to insert it
» consider the 15; determine where to insert it

Inserting an Element

« When we consider element 1, elements 0 through i - 1
are already sorted with respect to each other.
0 1 2 3 4

example for i = 3: 6 |14|119]| 9

« Toinsert element 1i:
* make a copy of element 1, storing it in the variable toInsert:

0 1 2 3

toInsert| 9 6 |14|119| 9

e consider elements i-1,1-2, ...
«ifan element > toInsert, slide it over to the right
« stop at the first element <= toInsert
0 1 2 3

toInsert| 9 (§) 14 | 19

« copy toInsert into the resulting “hole™ | 6 | 9 |14 | 19
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Insertion Sort Example (done together)

description of steps 12| 5 2 | 13|18

4

Implementation of Insertion Sort

public class Sort {

public static void insertionSort(int[] arr) {
for (int i = 1; i < arr.length; i++) {
if Carr[i] < arr[i-1]1) {
int toInsert = arr[i];

int j = 1;

do {
arr[jl = arr[j-1];
i=3-1

} while (j > 0 & & toInsert < arr[j-1]1);

arr[j] = tolInsert;
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Time Analysis of Insertion Sort

The number of operations depends on the contents of the array.

best case: array is sorted
* each element is only compared to the element to its left
* we never execute the do-while loop!
s C(n=—___ , M(n)=______, running time =
¥~.also true if array
worst case: array is in reverse order is almost sorted

* each element is compared to all of the elements to its left:
arr[1] is compared to 1 element (arr[0])
arr[2] is compared to 2 elements (arr[0] and arr[1])

arr[n-1] is compared to n-1 elements
e C(N=142+..+(n-1)=
* similarly, M(n) = , running time =

average case: elements are randomly arranged
* on average, each element is compared to half
of the elements to its left

+ stillgetc(n)=M(n)=_____ , running time =

Shell Sort
Developed by Donald Shell

Improves on insertion sort
 takes advantage of the fact that it's fast for almost-sorted arrays

+ eliminates a key disadvantage: an element may need
to move many times to get to where it belongs.

Example: if the largest element starts out at the beginning of the
array, it moves one place to the right on every insertion!
0 1 2 3 4 5 ... 1000

999 | 42 | 56 | 30 | 18 | 23 | .. | 11

Shell sort uses larger moves that allow elements to quickly get
close to where they belong in the sorted array.
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Sorting Subarrays

Basic idea:
 use insertion sort on subarrays that contain elements
separated by some increment incr
« increments allow the data items to make larger “jumps”
* repeat using a decreasing sequence of increments

Example for an initial increment of 3:
0 1 2 3 4 5 6 7
36 {18 10|27 3 |20] 9| 8

+ three subarrays:
1) elements 0,3,6 2)elements1,4,7 3)elements 2 and 5

Sort the subarrays using insertion sort to get the following:
0 1 2 3 4 5 6 7
9 |3 (10|27| 8 | 20| 36|18

Next, we complete the process using an increment of 1.

Shell Sort: A Single Pass

We don’t actually consider the subarrays one at a time.

For each element from position incr to the end of the array,
we insert the element into its proper place with respect to
the elements from its subarray that come before it.

The same 0 1 2 3 4 5 8 7
example “6118]10[27] 3 |20
(incr=3):

2719811036 3 /20| 9 | 8

27| 3 1103618 | 20| 9 | 8

“713|10]36]18]20] 9| 8

T~

9| 3/10[27]%8]20]36] &

9 3 (10|27| 8 |20 |36]|18
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Inserting an Element in a Subarray

« When we consider element 1, the other elements in its subarray
are already sorted with respect to each other.

example fori = 6: 0 ! 2 3 . : - L
(incr = 3) 271 3 |10 36|18 20| 9| 8

the other element’s in 9’s subarray (the 27 and 36)
are already sorted with respect to each other

* Toinsert element i:

* make a copy of element 1, storing it in the variable toInsert:
0 1 2 3 4 5 6 7

toInsert| 9 271 3110 36|18|20| 9| 8

« consider elements i-incr, i-(2*incr), i-(3*incr), ..
«ifan element > toInsert, slide it right within the subarray
« stop at the first element <= toInsert
0 1 2 3 4 5 6 7
toInsert| 9 3110|2718 |20| 36| 8
0 1 2 3 4
* copy toInsertintothe “hole”™ | 9 | 3 |10 | 27| 18

The Sequence of Increments

+ Different sequences of decreasing increments can be used.

» Our version uses values that are one less than a power of two.
« 2k—1 for some k
+ ...63,31,15,7,3, 1
+ can get to the next lower increment using integer division:
incr = 1incr/2;

+ Should avoid numbers that are multiples of each other.

» otherwise, elements that are sorted with respect to each other
in one pass are grouped together again in subsequent passes

* repeat comparisons unnecessarily
+ get fewer of the large jumps that speed up later passes
» example of a bad sequence: 64, 32, 16, 8, 4, 2, 1
» what happens if the largest values are all in odd positions?
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Implementation of Shell Sort

public static void shellsort(int[] arr) {

int incr =
while (2 *

incr =
}

1;
incr <= arr.length) {
2 * dncr;

incr = incr - 1;

while (incr >= 1) {
for (int i = incr; i < arr.length; i++) {

if

}

incr =

(arr[i] < arr[i-incr]) {
int toInsert = arr[i];

int j = i;
do {
arr[j] = arr[j-incr];
j =3 - incr;
} while (j > incr-1 &&
toInsert < arr[j-incr]);

arr[j] = tolInsert; ‘\\ﬂhmummMCeinchM71
in the for-loop, you get the

for inserti ;
incr/2: code for insertion sort.)

Time Analysis of Shell Sort

+ Difficult to analyze precisely
+ typically use experiments to measure its efficiency

» With a bad interval sequence, it's O(n?2) in the worst case.

« With a good interval sequence, it’s better than O(n2).
+ atleast O(n!->) in the average and worst case

* some experiments have shown average-case running times
of O(nt-25) or even O(n?/6)

+ Significantly better than insertion or selection for large n:

10 100 31.6 17.8

100 10,000 1000 316
10,000 100,000,000 1,000,000 100,000
106 1012 10° 3.16 x 107

» We've wrapped insertion sort in another loop and increased its
efficiency! The key is in the larger jumps that Shell sort allows.
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Practicing Time Analysis

» Consider the following static method:
public static int mystery(int n) {

int x = 0;

for (int i =0; i < n; i++) {
X += 13 // statement 1
for (int j =0; j < 1i; j++) {

X += J;

}

}

return Xx;

}

» What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?

What about now?

+ Consider the following static method:
public static int mystery(int n) {

int x = 0;

for (int i =0; i < 3*n + 4; i++) {
X += 13 // statement 1
for (int j =0; j < 1i; j++) {

X += J;

3

3

return x;

}

» What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?
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Practicing Time Analysis

» Consider the following static method:
public static int mystery(int n) {

int x = 0;

for (int i =0; i < n; i++) {
X += 1; // statement 1
for (int j =0; j < 1; j++) {

X += j; // statement 2

}

}

return Xx;

}

What is the big-O expression for the number of times that
statement 2 is executed as a function of the input n?

value of i number of times statement 2 is executed

Bubble Sort

» Perform a sequence of passes from left to right
» each pass swaps adjacent elements if they are out of order
+ larger elements “bubble up” to the end of the array

At the end of the kth pass:

+ the k rightmost elements are in their final positions
» we don't need to consider them in subsequent passes.

» Example: 0 1 2 3 4
28 | 24 |37 |15 | 5

after the first pass: 24 | 28 | 15 5 37

after the second: 24 | 15 5 28 | 37

after the third: 15| 5 | 24| 28| 37

after the fourth: 5 | 751 24| 28 | 37
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Implementation of Bubble Sort

public class Sort {

public static void bubbleSort(int[] arr) {
for (int i = arr.length - 1; i > 0; i--) {
for (int j =0; j <1; j++) {
if (arr[j] > arr[j+1]1) {
swap(arr, j, j+1);

}

}

* Nested loops:
 the inner loop performs a single pass
 the outer loop governs:
 the number of passes (arr.length - 1)
- the ending point of each pass (the current value of 1)

Time Analysis of Bubble Sort

» Comparisons (n = length of array):
+ they are performed in the inner loop

* how many repetitions does each execution
of the inner loop perform?

value of i number of comparisons
n-—1 n-—1
n-—2 n-2
1+2+...+n-1=
2 2
1 1

public static void bubbleSort(int[] arr) {
for (int i = arr.length - 1; i > 0; i--) {
for (int j =0; j < 1i; j++) {
if (arr[j] > arr[j+1]) {
swap(arr, j, j+1);

}
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Time Analysis of Bubble Sort
Comparisons: the kth pa:\Lss performs n - k comparisons,
e

soweget c(n) = X1 = n?2/2-n/2 = O(n?)

i1
Moves: depends on the contents of the array
* in the worst case:

e M(n) =
* in the best case:

Running time:
¢ C(n) is always O(n2), M(n) is never worse than O(n2)
 therefore, the largest term of c(n) + M(n) is O(n?)

Bubble sort is a quadratic-time or O(n?) algorithm.
» can’t do much worse than bubble!
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Sorting Il
Divide-and-Conquer Algorithms,
Distributive Sorting

Computer Science E-22
Harvard Extension School

David G. Sullivan, Ph.D.

Quicksort

» Like bubble sort, quicksort uses an approach based on swapping
out-of-order elements, but it's more efficient.

* Arecursive, divide-and-conquer algorithm:

» divide: rearrange the elements so that we end up with
two subarrays that meet the following criterion:

each element in left array <= each element in right array

example:

[12] 8 [14] 46 [13] == [6 [ 8] 4]14]12]13]

» conquer: apply quicksort recursively to the subarrays,
stopping when a subarray has a single element

* combine: nothing needs to be done, because of the way
we formed the subarrays
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Partitioning an Array Using a Pivot

The process that quicksort uses to rearrange the elements
is known as partitioning the array.

It uses one of the values in the array as a pivot,
rearranging the elements to produce two subarrays:
« left subarray: all values <= pivot } equivalent to the criterion
* right subarray: all values >= pivot | 07 the previous page.

7 15| 4 9 6 18] 9 |12
l partition using a pivot of 9

7194|169 18|15 |12

all values <=9 all values >=9

The subarrays will not always have the same length.

This approach to partitioning is one of several variants.

Possible Pivot Values

First element or last element
* risky, can lead to terrible worst-case behavior
» especially poor if the array is almost sorted

[4]8]14]12] 6 |18| = [ 4] 8 |14|12] 6

18

pivot = 18
Middle element (what we will use)
Randomly chosen element

Median of three elements
* left, center, and right elements
» three randomly selected elements

+ taking the median of three decreases the probability of
getting a poor pivot
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Partitioning an Array: An Example
first Tast

arr » 7 (15| 4| 9|6 18| 9 |12
pivot = 9
« Maintain indices 1 and j, starting them “outside” the array:

i=first-1 1
j=last+1 71151 4| 9|6 [18] 9 |12

* Find “out of place” elements:
* increment i until arr[i] >= pivot
» decrement j until arr[j] <= pivot

1‘
7 11514196 18] 9 |12

.

« Swaparr[i] andarr[j]:
i J
71914 |9 |6 |18|15|12

Partitioning Example (cont.)

i j

from prev. page: 7191419 )|6 181512
i 3

« Find: 7191496 181512
i

+ Swap: 7191469 18|15|12
j i

* Find: 7191469 181512

and now the indices have crossed, so we return j.

« Subarrays: left = from first to j, right= from j+1 to Tast

first j i Tast
719146 |9 |18(15|12
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Partitioning Example 2
- Start i
(pivot = 13): 24| 5 | 2 | 1318 | 4 [ 2019
i j
« Find: 2415 | 2 |13 (18| 4 {2019
i ]
. Swap: 4 |5 |2 1318242019
ij
+ Find: 4 |5 |2 1318242019
and now the indices are equal, so we return j.
i3]
* Subarrays: 4 (5] 2 (13|18 (24|20|19

Partitioning Example 3 (done together)

+ Start 1
(pivot = 5): 4 1147 | 5|2 19|26 6
* Find: 4 1147 | 5|2 (19|26 6
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Partitioning Example 4

. Start i j
(pivot = 15): 8 |10] 7 |z5(20| 9 | 6 |18
- Find: 8 |10 7 [15]20] 9 | 6 |18

partition() Helper Method
private static int partition(int[] arr, int first, int last)
{
int pivot = arr[(first + Tast)/2];
int i = first - 1; // index going left to right
int j = last + 1; /7 index going right to Teft
while (true) {
do {
i+
} while (arr[i] < pivot);
do {
} while (arr[j] > pivot);
if (< 3) {
swap(arr, i, j);
} else {
return j; /7 arr[j] = end of Teft array
}
}
} first Tlast
7115419 |6 (18| 9 |12
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Implementation of Quicksort

public static void quickSort(int[] arr) { // "wrapper" method
if (arr.length <= 1) {
return;
}
gsort(arr, 0, arr.length - 1);
3

private static void gSort(int[] arr, int first, int last) {
int split = partition(arr, first, last);

if (first < split) { // 7f left subarray has 2+ values
gsort(arr, first, split); // sort it recursively!

}
if (last > split + 1) { /7 1F right has 2+ values
gsort(arr, split + 1, last); // sort it/
}
} // note: base case is when neither call is made!
split
first 3) last

7191469 |18]15|12

A Quick Review of Logarithms

« Tlogyn = the exponent to which b must be raised to get n
e logyn = p if b? = n

+ examples: 1o0g,8 = 3 because 2° = 8
109,,10000 = 4 because 10* = 10000

* Another way of looking at Tog,n:
+ let's say that you repeatedly divide n by 2 (using integer division)
» log,n is an upper bound on the number of divisions
needed to reach 1
+ example: Tog,18 is approx. 4.17
18/2 = 9 9/2 = 4 4/2 = 2 2/2 =1
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A Quick

O(logn) algorithm —

Review of Logs (cont.)

one in which the number of operations

is proportional to Tog,n for any base b

» Tlogy,n grows much more slowly than n

Tog,n

2 1

1024 (1K) 10
1024%1024 (1Im) 20
1024*1024*1024 (1G) 30

Thus, for large values

of n:

* a O(log n) algorithm is much faster than a O(n) algorithm

« logn << n

* a O(nlog n) algorithm is much faster than a O(n?) algorithm

*n*logn <<

n*n it's also faster thana O(nl->)

nlogn << n? algorithm like Shell sort

Time Analysis of Quicksort

* most elements are

best case: partitioning
* repeated recursive

Partitioning an array of length n requires approx. n comparisons.

compared with the pivot once; a few twice

always divides the array in half
calls give:

comparisons

| n | n
n/2 n/2 2¥(n/2) =n
(n/4]  [n/4] [n/4] [n/4] 4*(n/4) = n

O
0

there are
e C(n) =7
Similarly, M(n) and

at each "row" except the bottom, we perform n comparisons

rows that include comparisons

running time are both
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Time Analysis of Quicksort (cont.)

* worst case: pivot is always the smallest or largest element
* one subarray has 1 element, the otherhas n - 1

* repeated recursive calls give: comparisons

« C(n) = > i= 0(n2). wm(n) and runtime are also 0(n?).
iz2

» average case is harder to analyze
« C(n) >nTog,n, butit’s still 0(nTogn)

Mergesort

» The algorithms we've seen so far have sorted the array in place.

+ use only a small amount of additional memory

» Mergesort requires an additional temporary array
of the same size as the original one.

+ it needs O(n) additional space, where n is the array size

+ ltis based on the process of merging two sorted arrays.
* example:

[ 2] 8 |14]24]
N
HEEECe

[2] 5] 78] 9]11]14]24]
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Merging Sorted Arrays

» To merge sorted arrays A and B into an array C, we maintain

three indices, which start out on the first elements of the arrays:

;
al 2|8 [14]24] k

] o I

Bl 5| 7] 9] 11]

» We repeatedly do the following:

» compare Ali] and BJ[j]
» copy the smaller of the two to C[k]
* increment the index of the array whose element was copied
* increment k
1‘
Al 2] 8 ]14]24] K

J cf2| [ [ [ [ ] |

B 5| 7] 9] 11]

Merging Sorted Arrays (cont.)

+ Starting point:

;
Al 2] 8 [14]24] k

] cl [ [ [ [ [ [ ]

B| 5| 7] 9] 11]

» After the fjrst copy:

;
Al 2] 8 |14]24] K

J cf2| [ [ ] [ ] |

B 5| 7] 9] 11]

* After the second copy:

:
Al 2] 8 [14]24] K

J cl2]s] [ [ [ [ |

B 5| 7] 9] 11]
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Merging Sorted Arrays (cont.)

» After the t_hird copy:

;
Al 2] 8 |14]24] k
j clefsfz] | [ [ [ |

Bl 5| 7| 9] 11]

* After the fourth copy:

;
Al 2] 8 |14]24] K
' cl2lsl718] | | [ |

j
B 5| 7] 9] 11]

* After the fifth copy:
1

Al 2] 8 |14]24] K
cl2sl7]8l9] | [ |

B 5| 7] 9] 11]

Merging Sorted Arrays (cont.)

+ After the sixth copy:

;
Al 2] 8 |14]24] k
icl2|s] 7891z | |

B 5| 7| 9] 11|

» There's nothing left in B, so we simply copy the remaining

elements from A:
;
Al 2] 8 |14]24]

Jocl2|s] 78] 9]11]14]24]

B 5| 7] 9] 11]

k
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+ Like quicksort, mergesort is a divide-and-conquer algorithm.

Divide and Conquer

* divide: split the array in half, forming two subarrays

» conquer: apply mergesort recursively to the subarrays,
stopping when a subarray has a single element

» combine: merge the sorted subarrays

[12] 8 [14] 4 | 6 [33] 2 [27]

splt |12 8 |14 4| [6[33] 2 ]27]
st (12 8 [[14] 4 || 6 [33][2]27]
o []s ][ e] e 3]z 2]
mege [ 8 |12 4 [14]| ]| 6 [33]|] 2 [27]
merge | 4|8 [12]14]| [2 ] 6]27]33]
merge |2 468 12]14]27]33]

Tracing the Calls to Mergesort
the initial call is made to sort the entire array:

[12] 8 [14] 4 | 6 [33] 2 |27]

splitinto two 4-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14 4 |

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14 4 |

12| 8
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Tracing the Calls to Mergesort

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 14| 4 | 6 [33] 2 | 27]

[12] 8 [14] 4 |

12 | 8

base case, so return to the call for the subarray {12, 8}:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14 4 |

12 | 8

Tracing the Calls to Mergesort

make a recursive call to sort its right subarray:

[12] 8 |14] 4 | 6 [33] 2 |27]

[12] 8 [14] 4 |

12 | 8

base case, so return to the call for the subarray {12, 8}:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14] 4 |

12 | 8
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Tracing the Calls to Mergesort

merge the sorted halves of {12, 8}:
[12] 8 14| 4 | 6 [33] 2 | 27]

[12] 8 [14] 4 |

[12] 8 |=| 8 |12

end of the method, so return to the call for the 4-element subarray, which now has
a sorted left subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

[ 8 |12]14] 4 |

Tracing the Calls to Mergesort

make a recursive call to sort the right subarray of the 4-element subarray

[12] 8 |14] 4 | 6 [33] 2 |27]

[ 8 |12]14] 4 |

14| 4

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 |27]

[ 8 |12]14] 4 |

14 | 4

base case...
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Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

[12] 8 14| 4 | 6 [33] 2 | 27]

| 8 |[12]14] 4 |

14 | 4

make a recursive call to sort its right subarray:

[12] 8 14| 4 | 6 [33] 2 | 27|

| 8 [12]14] 4 |

14 | 4

base case...

Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

[12] 8 |14] 4 | 6 [33] 2 |27]

[ 8 |12]14] 4 |

14| 4

merge the sorted halves of {14, 4}:

[12] 8 [14] 4 | 6 [33] 2 |27]

[ 8 1214 4 |

[14] 4 | =] 4 | 14]
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Tracing the Calls to Mergesort

end of the method, so return to the call for the 4-element subarray, which now has
two sorted 2-element subarrays:

[12] 8 [14] 4 | 6 [33] 2 [27]

[ 8 [12] 4 |14]

merge the 2-element subarrays:

[12] 8 14| 4 | 6 [33] 2 | 27|

[8[12] 4 14| = | 4|8 |12]14]

Tracing the Calls to Mergesort

end of the method, so return to the call for the original array, which now has a
sorted left subarray:

[ 4] 8 |12]14] 6 [33] 2 |27]

perform a similar set of recursive calls to sort the right subarray. here's the result:

[ 4] 8 ]12]14] 2| 6 |27]33]

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

[ 4] 8]12]14] 2| 6 |27]33]

i

[2]4]6]8[12]14]27]33]
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Implementing Mergesort

» In theory, we could create new arrays for each new pair of
subarrays, and merge them back into the array that was split.

+ Instead, we'll create a temp. array of the same size as the original.

» pass it to each call of the recursive mergesort method
+ use it when merging subarrays of the original array:

e [E]mla[m] e [5]2 7]

i

wm (78 [12[2] [ [ [ |

+ after each merge, copy the result back into the original array:
arr| 4 [ 8 [12]14] 6 [33] 2 |27]

1

tep| 4 [ 8 [12]14] | | | |

A Method for Merging Subarrays

private static void merge(int[] arr, int[] temp,
int TeftStart, int lefteEnd, int rightStart, int rightend) {

int i = TeftStart; // index into Tleft subarray
int j = rightstart; // index into right subarray
int k = TeftStart; // index into temp

while (i <= TeftEnd & j <= righteEnd) {
if (arr[i] < arr[j]) {
temp[k] = arr[i];
i++; k++;
} else {
temp[k] = arr[j]l;
J++; k++;
}
}

while (i <= leftend) {
temp[k] = arr[i];
T++; k++;

}

while (j <= rightend) {
temp[k] = arr[j];
J++; k++;

}

for (i = leftstart; i <= righteEnd; i++) {
arr[i] = temp[il;

}
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A Method for Merging Subarrays

private static void merge(int[] arr, int[] temp,
int leftstart, int leftend, int rightStart, int rightend) {

int i = leftStart; // index into left subarray
int j = rightstart; // index into right subarray
int k = leftStart; // index into temp

while (i <= TefteEnd && j <= rightend) { // both subarrays still have values
if (arr[i] < arr[j]) {
temp[k] = arr[i];

T4+ k++;
} else {
temp[k] = arr[jl;
J++; k++;
}
}
}
leftstart leftend|rightstart rightend
arr:| .. 4 8 12 | 14 2 6 27 | 33
temp:

Methods for Mergesort

* Here's the key recursive method:

private static void mSort(int[] arr, int[] temp, int start, int end){
if (start >= end) { // base case: subarray of Tength 0 or 1
return;
} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);

}
}
start end
arr:| .. 12 8 14 4 6 33 2 27
temp:
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Methods for Mergesort

Here's the key recursive method:

private static void mSort(int[] arr, int[] temp, int start, int end){
if (start >= end) { // base case: subarray of Tength 0 or 1
return;
} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);

We use a "wrapper" method to create the temp array,
and to make the initial call to the recursive method:
public static void mergeSort(int[] arr) {

int[] temp = new int[arr.length];
msort(arr, temp, 0, arr.length - 1);

Time Analysis of Mergesort

Merging two halves of an array of size n requires 2n moves.
Why?

Mergesort repeatedly divides the array in half, so we have the
following call tree (showing the sizes of the arrays):

moves
] 2
n/2 n/2 2%2%(n/2) = 2n

(n/4] [n/4] [n/4] [n/4] 4%2%(n/4) = 2n
at all but the last level of the call tree, there are 2n moves
* how many levels are there?

« M(n) =7
+ C(n) =7

CSCI E-22
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Summary: Sorting Algorithms

algorithm | best case | avgcase |worstcase| €extramemory
selection sort O(n?) O(n?) O(n?) o
insertion sort o) O(n?) O(n?) o

Shell sort | O(n Togn) Oo(nt-3) Oo(nt-3) o

bubble sort o(n?) o(n?) o(n?) o

quicksort O(nlogn) | O(nlogn) Oo(n?) best/avg: O(log n)

worst: O(n)
mergesort | O(nlogn) | O(nTogn) | O(nlogn) O(n)

Insertion sort is best for nearly sorted arrays.

Mergesort has the best worst-case complexity, but requires
O(n) extra memory — and moves to and from the temp. array.
Quicksort is comparable to mergesort in the best/average case.
+ efficiency is also O(n Tog n), but less memory and fewer moves
* its extra memory is from...
» with a reasonable pivot choice, its worst case is seldom seen

Comparison-Based vs. Distributive Sorting
All of the sorting algorithms we've considered have been
comparison-based:
+ treat the values being sorted as wholes (comparing them)
+ don’t “take them apart” in any way
« all that matters is the relative order of the values

No comparison-based sorting algorithm can do better than
0(nTog,n) on an array of length n.

» O(nlog,n) is alower bound for such algorithms

Distributive sorting algorithms do more than compare values;
they perform calculations on the values being sorted.

Moving beyond comparisons allows us to overcome
the lower bound.

+ tradeoff: use more memory.
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Distributive Sorting Example: Radix Sort

Breaks each value into a sequence of m components,
each of which has k possible values.

Examples:

* integerinrange O ... 999

+ string of 15 upper-case letters 15 26

+ 32-bit integer 32 2 (in binary)
4 256 (as bytes)

Strategy: Distribute the values into "bins" according to their
last component, then concatenate the results:

33 41 12 24 31 14 13 42 34
get: 41 31|12 42 | 33 13 | 24 14 34

Repeat, moving back one component each time:

get: | | |

Analysis of Radix Sort

m = number of components
k = number of possible values for each component
n = length of the array

Time efficiency: O(m*n)

» perform m distributions, each of which processes all n values

* O(m*n) < O(nlogn) when m < Tlogn
so we want m to be small

However, there is a tradeoff:
« as m decreases, k increases

» fewer components =» more possible values per component

» as k increases, so does memory usage
» need more bins for the results of each distribution
* increased speed requires increased memory usage
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slower

Big-O Notation Revisited

We've seen that we can group functions into classes by
focusing on the fastest-growing term in the expression for the
number of operations that they perform.
* e.g., an algorithm that performs n2/2 —n/2 operations is a
O(n?)-time or quadratic-time algorithm

Common classes of algorithms:

name example expressions  big-O notation
constant time 1,7,10 o
logarithmic time 31ogq4n, log,n + 5 O(Clogn)
linear time 5n, 10n - 2Tog;n O(n)

nlogn time 4nlog,n, nlog,n+n O(nlogn)
quadratic time 2n?+3n,n2-1 O(n?)

cubic time nZ+3n3, 5n3-5 O(n3)
exponential time 2", 5e" + 2n? O(cm
factorial time 3n!, 5n +n! Oo(nH)

How Does the Number of Operations Scale?

Let's say that we have a problem size of 1000, and we measure
the number of operations performed by a given algorithm.

If we double the problem size to 2000, how would the number
of operations performed by an algorithm increase if it is:

* O(n)-time

O(n?)-time

O(n3)-time
* O(log,n)-time

* O(2M)-time
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How Does the Actual Running Time Scale?

* How much time is required to solve a problem of size n?
« assume that each operation requires 1 usec (1 x 10-¢ sec)

problem size (n)

time
function 10 20 30 40 50 60
n .00001 s | .00002 s | .00003 s | .00004 s | .00005s | .00006 s
n2 .0001s | .0004s | .0009s | .0016s | .0025s .0036 s
n® 1s 3.2s 24.3s 1.7 min | 5.2 min 13.0 min
2" .001s 1.0s 17.9 min |12.7 days| 35.7 yrs | 36,600 yrs

+ sample computations:
« when n = 10, an n? algorithm performs 102 operations.

102 * (1 x 10 sec) = .0001 sec

« when n = 30, a 2" algorithm performs 230 operations.
230* (1 x 10 sec) = 1073 sec = 17.9 min

What's the Largest Problem That Can Be Solved?

+ What's the largest problem size n that can be solved in
a given time T? (again assume 1 usec per operation)

time time available (T)
function 1 min 1 hour 1 week 1 year
n 60,000,000 | 3.6 x10° 6.0 x 10" 3.1x101
n2 7745 60,000 777,688 5,615,692
n® 35 81 227 500
2" 25 31 39 44

* sample computations:

* 1 hour = 3600 sec
that's enough time for 3600/(1 x 10-%) = 3.6 x 10° operations

n2 algorithm:

n2=36x10° -

2n algorithm:

2n=36x10° >

n = (3.6 x 10%)12 = 60,000

n =log,(3.6 x 10%) ~= 31
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Linked Lists

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Representing a Sequence of Data

Sequence — an ordered collection of items (position matters)
+ we will look at several types: lists, stacks, and queues

Most common representation = an array

Advantages of using an array:

» easy and efficient access to any item in the sequence
« items[i] gives you the item at position i in O(1) time
» known as random access
» very compact (but can waste space if positions are empty)

Disadvantages of using an array:
* have to specify an initial array size and resize it as needed

* inserting/deleting items can require shifting other items
» ex: insert 63 between 52 and 72

items | *I—Pl 31 | 52 | 72 | . |
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Alternative Representation: A Linked List

items —

—,| 31 52 72
null

A

A linked list stores a sequence of items in separate nodes.

+ Each node is an object that contains:
* asingle item 31

* a'"link" (i.e., a reference) to N
the node containing the next item

« The last node in the linked list has a link value of nul1.

The linked list as a whole is represented by a variable that
holds a reference to the first node.

* e.g., items in the example above

Arrays vs. Linked Lists in Memory

» In an array, the elements occupy consecutive memory locations:

items 31 52 72

Ox100  0x104 _ 0Ox108
items| 0x100 31 52 72

» In alinked list, the nodes are distinct objects.
+ do not have to be next to each other in memory
+ that's why we need the links to get from one node to the next!

_ R 52 72
1tems null
0x520 0x812 0x208
, —— 31 52 72
Ttems| o 0x812 0x208 null
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Linked Lists in Memory

items

0x520 Ox812 0x208
31 52 72
null

» Here's how the above linked list might actually look in memory:

<— the variable i tems

} the last node

} the first node

0x200 | 0x520
0Ox204

0x208 72
0x212 | null
0x216

0x520 31
0x524 | 0x812
0x528

Ox812 52
0x816 | 0x208

} the second node

Features of Linked Lists

» They can grow without limit (provided there is enough memory).

» Easy to insert/delete an item — no need to "shift over" other items.
 for example, to insert 63 between 52 and 72:

+ they don't provide random access
* need to "walk down" the list to access an item
+ the links take up additional memory

before:- 31 55 7>
1tems null

after:
_ 31 52 72
1tems null

" A
63
+ Disadvantages:

CSCI E-22
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A String as a Linked List of Characters

'CI lal ltl
> null

strl >

A

Each node represents one character.

Java class for this type of node:

pubTic class StringNode { ch| ¢
private char ch;
private StringNode next; next|] —1 —*

same type as the node itself!

pubTlic StringNode(char c, StringNode n) {
this.ch = c;
this.next = n;

}

» The string as a whole is represented by a variable that holds
a reference to the node for the first character (e.g., strl above).

A String as a Linked List (cont.)

* An empty string will be represented by a null value.

example:
StringNode str2 = null;

+ We will use static methods that take the string as a parameter.
* e.g., we'll write Tength(strl) instead of strl.length()
» outside the class, call the methods using the class name:
StringNode.length(strl)

» This approach allows the methods to handle empty strings.
o if strl == null:
« Tength(strl) will work
« strl.length() will throw a NuTTPointerException
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Building a Linked List of Characters |

public StringNode(char c,
StringNode n) {

this.ch = c;
this.next = n;

}

1 't'
str null

* We can use the stringNode constructor to build the linked list
from the previous slide.

* One way is to start with the last node and work towards the front:
StringNode strl = new StringNode('t', null);

Building a Linked List of Characters Il

public StringNode(char c,
StringNode n) {

this » 'a’ this.ch = ¢;
this.next = n;
C lal ~ }
" \A
ltl
strl >
null

* We can use the stringNode constructor to build the linked list
from the previous slide.
* One way is to start with the last node and work towards the front:

StringNode strl = new StringNode('t', null);
strl = new StringNode('a', strl);
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Building a Linked List of Characters IlI

public StringNode(char c,
StringNode n) {
this.ch = c;
this.next = n;

}

lal ltl
null

strl

y

We can use the stringNode constructor to build the linked list
from the previous slide.
One way is to start with the last node and work towards the front:

StringNode strl = new StringNode('t', null);
strl = new StringNode('a', strl);

Building a Linked List of Characters IV

public StringNode(char c,
StringNode n) {

this.ch = c;
this.next = n;

}

ICI lal ltl

trl
Str null

y

Y

We can use the stringNode constructor to build the linked list
from the previous slide.

One way is to start with the last node and work towards the front:

StringNode strl = new StringNode('t', null);

strl = new StringNode('a', strl);

strl = new StringNode('c', strl);
Later, we'll see methods that can be used to build a linked list
and add nodes to it.
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Review of Variables

* A variable or variable expression represents both:
* a"box" or location in memory (the address of the variable)
+ the contents of that "box" (the value of the variable)

* Example: temp.next.ch

. Practice: (2% 0x520 0x812 0x208
str ch g’ ' [l g ]
temp \\J
StringNode str; // points to the first node
StringNode temp; // points to the second node
expression | address value Assumptions:

— e ch field has the same
str 0x200 0x520 (ref to the 'd' node) memory address as
str.ch the node itself.

* next field comes
str.next 2 bytes after the start
of the node.
More Complicated Expressions
0x200 0x520 0x812 0x208
str “d’ ‘0’ ‘ g )
0x204 null

* Next, consider temp.next.ch
It represents the ch field of the node to which temp.next refers.

« address =
« value =

« Start with the beginning of the expression: temp.next
It represents the next field of the node to which temp refers.

» address =
e value =

CSCI E-22
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What are the address and value of str.next.next?

0x200 0x520 0x812 0x208
str ‘g’ ‘0’ ‘g’
null

+ str.nextis...

» thus, str.next.nextis...

What expression using t would give us 'e'?

0xc000 0xbe00 0x3004 0xbb00 0xa004

Sl_l 'b' r' ‘e’ a k!
—>

null
tz/
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What expression using t would give us 'e'?

0xc000 0xhe00

0x3004

0xbb00

0xa004

e

|a|

k!

null

Iael

Working backwards...

« | know that | need the ch field in the 'e' node

« Where do | have a reference to the 'e' node?

+ What expression can | use for the box containing that reference?

Review of Assignment Statements

* An assignment of the form
varl = var?2;
» takes the value inside var2
e copiesitinto varl

* Example involving integers:

int x = 5;
int y = x;
5

» Example involving references:
int[] al = {3, 4, 5};
int[] a2 = al;

0x320

a2

0x400

0x804

0x600

0x320

Ox256

7:|3|4|5|
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What About These Assignments?

0x200 .
ctr 320 Qx812 0x208 * Identify the two boxes.
d ° El « Determine the value in the box
Ox204 null

temp E\J specified by the right-hand side.
* Copy that value into the box
specified by the left-hand side.
1) str.next = temp.next;

2) temp.next = temp.next.next;

Writing an Appropriate Assignment

+ If temp didn't already refer to the 'o' node, what assignment
would be needed to make it refer to that node?

0x200 0x520 0x812 0x208
str d" 0" v g '
Ox204 null
temp

« start by asking: where do | currently have a reference
to the 'o' node?

» then ask: what expression can | use for that box?

» then write the assignment:
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A Linked List Is a Recursive Data Structure!

* Recursive definition: a linked list is either
a) empty or
b) a single node, followed by a linked list

+ Viewing linked lists in this way allows us to write recursive
methods that operate on linked lists.

Recursively Finding the Length of a String
* For a Java string object: str e ]

public static int length(String str) {
if (str.equals("")) {
return 0;
} else {
int lenRest = Tength(str.substring(1l));
return 1 + TenRest;

* For a linked-list string: ser[ o< a’ T

> null

A4

public static int Tength(StringNode str) {
if (str == null) {
return 0O;
} else {
int lenRest = length(str.next);
return 1 + lenRest;
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An Alternative Version of the Method

+ Original version:

public static int Tength(StringNode str) {
if (str == null) {
return 0;
} else {

int lenRest = length(str.next);
return 1 + lenRest;

Version without a variable for the result of the recursive call:

public static int length(StringNode str) {
if (str == null) {

return 0;
} else {
return 1 + length(str.next);
}
}
Tracing Tength()
public static int length(StringNode str) {
if (str == null) {
return 0;
} else {
return 1 + length(str.next);
3
¥ Ox128 Ox720 0x404
¢! a' "t
strll: > null

Example: stringNode.length(strl)

str:null
return 0;
str:0x404|(str:0x404 | str:0x404
t t return 1+0
str:0x720|[str:0x720(|str:0x720|[str:0x720||str:0x720
“at” “at” “at” “at” return 1+1
str:0x128||str:0x128([str:0x128||str:0x128||str:0x128|[str:0x128| str:0x128
"cat" "cat" "cat" "cat" "cat" "cat" return 1+2
time ————»
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Using lteration to Traverse a Linked List
* Many tasks require us to traverse or "walk down" a linked list.
* We just saw a method that used recursion to do this.
* It can also be done using iteration (for loops, while loops, etc.).

* We make use of a variable (call it trav) that keeps track of
where we are in the linked list.

EW! ‘a’ "I' lk,
5”‘: null

» Template for traversing an entire linked list:

StringNode trav = str; // start with first node
while (trav != null) {

// process the current node here

trav = trav.next; // move trav to next node

Example of Iterative Traversal

» toUppercCase(str): converting str to all upper-case letters

I.FY ‘.i, ln! le!
str: null

: lFl ‘I’ IN! IEY
str
null

» Similar to the built-in method for Java string objects.

* This method processes linked-list strings:
* uses a loop to process one stringNode at a time
* modifies the internals of the string (unlike the built-in version)
+ thus, it doesn't need to return anything
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Example of Iterative Traversal (cont.)

« toUppercCase(str): converting str to all upper-case letters

Str null

t IFY EI! ‘N! iEl
s r| I
null

* Here's the method:

public static void toUppercCase(StringNode str) {
StringNode trav = str;
while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;
}
}

 uses a built-in static method from the Character class
to convert a single char to upper case

Tracing toUppercCase(): Before the Loop

Str lfl |.i| lnl lel
null

A 4

Calling stringNode.toUppercCase(str) adds a stack frame to the stack:

trav
str
\\
\ T=0 | \l
str » "F' 1 n lel
» null
StringNode trav = str;
trav ~
str
\ | - ) Al ]
Stl" "F' 'I n lel
» null
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Tracing toUppercCase(): First Iteration of Loop

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

3
after updating trav.ch:
trav
str
—
e
::::\\\A -
str- 'Fl I.II lnl lel
> » null
after updating trav:
trav —
str \\
str 'Fl l.il lnl lel
null

Tracing toUppercCase(): Second lteration

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

}
after updating trav.ch:
trav
— |
str ~]
I~
Str o IFI II' lnl lel
» null
after updating trav:
trav —
str ~]
I~
Str. ol IFI III lnl lel
» null
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Tracing toUppercCase(): Third lteration

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

3
after updating trav.ch:
trav —
str
\ '
Str- » 'F' 'I' lN' |e|
» null
after updating trav:
trav —]
str
\‘ ) )
str 'F' I lN' lel
null

Tracing touUppercCase(): Fourth Iteration

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

}
after updating trav.ch:
trav .
str
str fe = T INE !
» null
after updating trav:
trav| null
str ~]
I~
Str. ol IFI III INI IEI
» null
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Tracing toUppercCase(): Finishing Up

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

}
results of the final iteration:
travl null
str
—1
Str. o IFI lIl INI IEI
» null
and now trav == null, so we end the loop and return:
str 'F! "' "N 'E'
null

Getting the Node at Position i in a Linked List

« getNode(str, i) —should return a reference to the ith node

in the linked list to which str refers

TE R "n' e’
str »

null

+ Examples:

e getNode(str, 0) should return a ref. to the 'f' node
e getNode(str, 3) should return a ref. to the 'e' node
e getNode(str.next, 2) should return a ref. to...?

More generally, when 0 < i < length of list,
getNode(str, i) is equivalentto getNode(str.next, i-1)
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Getting the Node at Position i in a Linked List

lfl |.i| lnl lel
null

str »

» Recursive approach to getNode(str, i):
e if i == 0, return str (base case)
» else call getNode(str.next, i-1) and return what it returns!
» other base case?

* Here's the method:

private static StringNode getNode(StringNode str, int i) {
if (i <0 || str == null) { // base case 1: no node 7
return null;

} else if (i == 0) { // base case 2: just found
return str;
} else {

return getNode(str.next, i-1);

}

Deleting the Item at Position i
+ Special case: i == 0 (deleting the first item)

* Update our reference to the first node by doing:
str = str.next;

£

str -—p ljl |a| lvl lal
null
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Deleting the Item at Position i (cont.)

« Generalcase: i > 0

1. Obtain a reference to the previous node:
StringNode prevNode = getNode(i - 1);

(example fori==1)

str <SR 'a' "v! 'a'
null
f
prevNode !
Deleting the Item at Position i (cont.)
* Generalcase: i > 0
2. Update the references to remove the node
(example fori==1)
before:
Str! » lj \l lal lvl lal
null
+
prevNode !
after:
str » ' 'a' 'v' 'a'
\ null
+
prevNode I e _

Harvard Extension School

111



CSCI E-22

Inserting an Item at Position i

» Special case: i == 0 (insertion at the front of the list)

» Step 1: Create the new node. Fill in the blanks!

before:
ch| 'f'
str 3" ! Te!
> » null
after: —
ch f I
newNode
~Sa
str 3’ 'c' 'e'
null
StringNode newNode = new StringNode( ) );
Inserting an Item at Position i (cont.)
* Special case: i == 0 (continued)
+ Step 2: Insert the new node. Write the assignment!
before (result of previous slide):
ch f I
newNode
~a
str 3’ ¢! 'e'
> » null
after: —
ch f I
newNode
/ \
str 3’ ¢! 'e'
> » null
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Inserting an Item at Position i (cont.)

» General case: i > 0 (insert before the item currently in posn 1)
before:

1 al Al C 1 A} e ]
str >
null
ch lml
after (assume that i == 2): m'
newNode /-f”"”ﬂ#'#/#(//flfﬂ> %
str o2 ¢ €
x—»| null
ch| 'm’ X
prevNode

StringNode prevNode = getNode(i - 1);
StringNode newNode = new StringNode(ch, );
// one more 1line

Returning a Reference to the First Node

* Both deletechar() and insertcChar() return a reference to
the first node in the linked list. For example:

public static StringNode deleteChar(StringNode str, int i) {

;f (G =0 { // special case
str = str.next;
} else { // general case

StringNode prevNode = getNode(str, i-1);
if (prevNode != null && prevNode.next != null) {
prevNode.next = prevNode.next.next;

}
return str;

}

* Clients should call them as part of an assignment:
sl StringNode.deletechar(sl, 0);
s2 StringNode.insertChar(s2, 0, 'h');
* |f the first node changes, the client's variable will be updated
to point to the new first node.
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Creating a Copy of a Linked List

» copy(str) — create a copy of the entire list to which str refers

* Recursive approach:
* base case: if stris empty, return null
 else: — make a recursive call to copy the rest of the linked list
— create and return a copy of the first node,
with its next field pointing to the copy of the rest

public static StringNode copy(StringNode str) {
if (str == null) { // base case
return null;

}

// make a recursive call to copy the rest of the Tist
StringNode copyRest = copy(str.next);

// create and return a copy of the first node,
// with 7ts next field pointing to the copy of the rest
return new StringNode(str.ch, copyRest);

Tracing copy (): the initial call

* From aclient: stringNode s2 = StringNode.copy(sl);

public static stringNode copy(stringNode str) {
if (str == null) {
return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

}
stack heap
copyRest
str
SZ \ vd ] IO 1 lg 1
sl » null
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Tracing copy (): the initial call

From a client: stringNode s2 = StringNode.copy(sl);

public static StringNode copy(StringNode str) {
if (str == null) {
return null;

}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

copyRest
str —
52 \ ldl lol lgl
sl [ } > null
Tracing copy (): the initial call
* From aclient: stringNode s2 = StringNode.copy(sl);
public static StringNode copy(StringNode str) {
if (str == null) {
return null;
}
StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);
}
copyRest
str
copyRest
str Y
. \ d’ \ o' lgl
sl [ » null
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Tracing copy (): the recursive calls

copyRest

str

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

null

Tracing copy (): the recursive calls

copyRest

str

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

null

A 4
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Tracing copy (): the recursive calls

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

copyRest

str

copyRest

str

copyRest

str

s2

sl

| null

Tracing copy (): the recursive calls

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

copyRest

str

copyRest

str

copyRest

str

s2

sl

{nu11|

A 4
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Tracing copy (): the recursive calls

copyRest

str

copyRest

str

copyRest

str

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;

3

StringNode copyRest = copy(str.next);

return new StringNode(str.ch,
copyRest);

null 1
\\
\ ldl \ lol lgl
{nu11|

Tracing copy (): the base case

copyRest

str

copyRest

str

copyRest

str

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return nulil;

}
StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);
null 1
\\
\ 'd' \ |0| \ lgl
» null
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Tracing copy (): returning from the base case

copyRest

null

str

copyRest

str

copyRest

str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

null

Tracing copy (): returning from the base case

copyRest

null

str

copyRest

str

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

g
null

null

A 4
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Tracing copy (): returning from the base case

copyRest

str

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);
}

g
/ nutl

null

Tracing copy (): returning from the base case

copyRest

str

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);
}

9 1.
/ null

null

A 4
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Tracing copy (): returning from the base case

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);

copyRest

str

s2

return new StringNode(str.ch,
copyRest);
}
lgl )

null

/ 'O'
\ ldl lol lgl
null

sl

Tracing copy (): returning from the base case

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);

return new StringNode(str.ch,
copyRest);
}
lgl .
null
/ ° <
'dl
\ ldl lol lgl
» null
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Tracing copy (): returning from the base case

* From aclient: StringNode s2 = StringNode.copy(sl);

lgl )

null

IOI )

ldl
52 ldl lol lgl
sl null

Tracing copy (): Final Result

e s2 now holds a reference to a linked list that is a copy of the
linked list to which s1 holds a reference.

lgl .

null

lol )

ldl
SZ 'dl lol lgl
sl » null
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Using a "Trailing Reference" During Traversal

When traversing a linked list, one trav may not be enough.

Ex:insert ch = "n' atthe right place in this sorted linked list:

= pr o =
e[
St o null

Traverse the list to find the right position:

StringNode trav = str;

while (trav != null &% trav.ch < ch) {
trav = trav.next;

}

When we exit the loop, where will trav point? Can we insert 'n'?

The following changed version doesn't work either. Why not?

while (trav != null && trav.next.ch < ch) {
trav = trav.next;
1

str »

Using a "Trailing Reference" (cont.)

* To get around the problem seen on the previous page,

we traverse the list using two different references:

« trav, which we use as before
e trail, which stays one node behind trav

p z
null

lal IC

T~

trail| null trav

StringNode trav = str;
StringNode trail = null;
while (trav != null && trav.ch < ch) {
trail = trav;
trav = trav.next;
}
// if trail == null, insert at the front of the list
// else insert after the node to which trail refers
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Using a "Trailing Reference" (cont.)

* To get around the problem seen on the previous page,
we traverse the list using two different references:
» trav, which we use as before
» trail, which stays one node behind trav

] [P | LI | [}

C p z

a

str >

null

7 A

7 trav

trail

StringNode trav = str;
StringNode trail = null;
while (trav != null && trav.ch < ch) {
trail = trav;
trav = trav.next;
}
// if trail == null, insert at the front of the 1ist
// else insert after the node to which trail refers

Using a "Trailing Reference" (cont.)

* To get around the problem seen on the previous page,
we traverse the list using two different references:
« trav, which we use as before
e trail, which stays one node behind trav

lal lcl 1 1 IZI
str > P
null
trail trav -~
StringNode trav = str;
StringNode trail = null;
while (trav != null && trav.ch < ch) {
trail = trav;
trav = trav.next;
1
// if trail == null, insert at the front of the list

// else insert after the node to which trail refers
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Doubly Linked Lists

ch lcl

"3’

Tt

next

null

prev| null

» In a doubly linked list, every node stores two references:
« next, which works the same as before

« prev, which holds a reference to the previous node

« in the first node, prev has a value of nulT

» The prev references allow us to "back up" as needed.
* remove the need for a trailing reference during traversal!

+ Insertion and deletion must update both types of references.

Find the address and value of s.next.next.ch

0xc000 0xbe00

0x3004 0xbb00 0xa004

et

'a! 'a

K

null

address
A. 0xbe00
B. 0x3004
C. 0xbb00
D.

none of these

Extra practice!
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Find the address and value of s.next.next.ch

0xc000 0xbe00 0x3004 0xbb00 0xa004
Ibl 1 r‘I lel Ial Ikl
s
| | N » null

s.next is the next field in the node to which s refers
» it holds a reference to the 'r' node

thus, s.next.next is the next field in the 'r' node
» it holds a reference to the 'e' node

thus, s.next.next.ch is the ch field in the 'e' node
* it holds the 'e'!

address value
A. 0xbe00 "r'
B. 0x3004 'e'
C. 0xbb00 'a'
D. none of these
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Lists, Stacks, and Queues

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Representing a Sequence: Arrays vs. Linked Lists

» Sequence — an ordered collection of items (position matters)
+ we will look at several types: lists, stacks, and queues

« Can represent any sequence using an array or a linked list

array

linked list

representation
in memory

elements occupy consecutive
memory locations

nodes can be at arbitrary
locations in memory; the links
connect the nodes together

advantages

provide random access
(access to any item in
constant time)

* no extra memory needed for
links

can grow to an arbitrary length
allocate nodes as needed

inserting or deleting does not
require shifting items

disadvantages

have to preallocate the
memory needed for the
maximum sequence size

* inserting or deleting can
require shifting items

no random access (may need
to traverse the list)

need extra memory for links

CSCI E-22

Harvard Extension School

127



CSCI E-22

Abstract Data Types

An abstract data type (ADT) is a model of a data structure
that specifies:

 the characteristics of the collection of data
 the operations that can be performed on the collection

It's abstract because it doesn’t specify how the ADT will be
implemented.

A given ADT can have multiple implementations.

The List ADT

A list is a sequence in which items can be accessed,
inserted, and removed at any position in the sequence.

The operations supported by our List ADT:
» getItem(i): getthe item at position i
« additem(item, 1i):add the specified item at position i
» removeItem(i): remove the item at position i
» Tength(): get the number of items in the list

« isFul1(Q): test if the list already has the maximum number

of items

Note that we don’t specify how the list will be implemented.
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Specifying an ADT Using an Interface

» In Java, we can use an interface to specify an ADT:

public interface List {
Object getIitem(int i);
boolean additem(Object item, int i);
Object removeItem(int i);
int Tength(Q);
boolean isFull(Q);
}

» An interface specifies a set of methods.
* includes only their headers
» does not typically include the full method definitions

Like a class, it must go in a file with an appropriate name.
* in this case: List.java

» Methods specified in an interface must be public,
so we don’'t need the keyword public inthe headers.

Implementing an ADT Using a Class

* To implement an ADT, we define a class.

+ We specify the corresponding interface in the class header:
public class ArrayList 7mplements List {

« tells the compiler that the class will define all of the methods
in the interface

* if the class doesn't define them, it won't compile

« We'll look at two implementations of the L1ist interface:
e ArrayList — uses an array to store the items
o LLList —uses a linked list to store the items
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Recall: Polymorphism

* An object can be used wherever an object of one of its
superclasses is called for.

» For example:
Animal a = new Dog(Q);

Animal[] zoo = new Animal[100];
zoo[0] new Ant(Q);
zoo[1] new Cat();

Another Example of Polymorphism

* An interface can be used as the type of a variable:
List myList;

» We can then assign an object of any class that implements
the interface:

List 11
List 12

new ArrayList(20);
new LLList();

» This allows us write code that works with any implementation
of an ADT:

public static void processList(List vals) {
for (int i = 0; i < vals.lengthQ); i++) {

}

+ vals can be an object of any class that implements List

+ regardless of which class vals is from,
we know it has all of the methods in the List interface
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Implementing a List Using an Array

pubTlic class ArrayList implements List {
private Object[] items;
private int Tlength;

public ArrayList(int maxSize) {

// code to check for invalid maxSize goes here...

this.items = new Object[maxSize];
this.length = 0;

public int length(Q) {
return this.length;

public boolean isFull( {

return (this.length == this.items.length);
3
11'51:E 'items: —>| | | | null ‘ |
Tength 2 ﬁ
E
a variable of type . ) - L 2
ArrayList an ArrayList object |"f0r"|

Recall: The Implicit Parameter

public class ArrayList implements List {
private Object[] items;
private int Tlength;

public ArrayList(int maxSize) {

this.items = new Object[maxSize];
this.length = 0;

public int length(Q) {
return this.length;

public boolean isFull() {
return (this.length == this.items.length);

}

+ All non-static methods have an implicit parameter (this)

that refers to the called object.

In most cases, we're allowed to omit it!
» we'll do so in the remaining notes
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Omitting The Implicit Parameter

pubTlic class ArrayList implements List {
private oObject[] items;
private int length;

public ArrayList(int maxSize) {
items = new Object[maxSize];
length = 0;

public int Tength(Q {
return length;
3

public boolean isFull() {
return (length == items.length);
}

}

* In a non-static method, if we use a variable that
* isn't declared in the method
* has the name of one of the fields
Java assumes that we're using the field.

Adding an Item to an ArrayList

» Adding at position i (shifting items i, i+1, ... to the right by one):

public boolean additem(Object item, int i) {
if (item == null || i <0 || i > length) {
throw new ITlegalArgumentException();
} else if ((srFullQ) {
return false;
3

// make room for the new ijtem
for (int j = length - 1; j >=1; j--) {
items[j + 1] = items[j];

}
items[i] = item;
Tength++;
return true;
3

example fori= 3: 0 1 2 3/}4[\5[}6 7 8
items ——>| | | | I|I|I| | | |
length| 6
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Adding an Item to an ArrayList

* Adding at position i (shifting items i, i+1, ... to the right by one):

public boolean additem(Object item, int i) {

if (item == null || i <0 || i > Tength) {
throw new IllegalArgumentException();

} else if (isFullQ) {
return false;

}

// make room for the new item

for (int j = Tength - 1; j >=1; j--) {
items[j + 1] = items[j];

3
items[i] = item;
Tength++;
return true;

}

example fori = 3: 0o 1 2 3 4 5 6 7 8
sens [ T T L T T T T ]
length| 7

Removing an Item from an ArrayList

* Removing item i (shifting items i+1, i+2, ... to the left by one):

public Object removeItem(int i) {
if (A <0 || i >= Tength) {
throw new IndexoutOofBoundsException();

Object removed = items[i];

// shift items after items[i] to the left
for (int j = 1; j < length - 1; j++) {

items[length - 1] = null;

length--;
return removed;

}

example fori=1: 1
0 2 3 4 5 6 7 8

items| — | | \lnu11|nu11|nu11|nu11|
length| 5
removecl|_—|—’I&I
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Getting an Item from an ArrayList

* Getting item i (without removing it):

public Object getItem(int i) {
if (3 <0 || 1 >= length) {
throw new IndexoutOofBoundsException();

return items[i];

tostring() Method for the ArrayList Class

public String tostring() {
String str = "{";
if (length > 0) {
for (int i = 0; i < length - 1; i++) {
str = str + items[i] + ", ";
}

str = str + items[length - 1];
3

str = str + "1}";

return str;

* Produces a string of the following form:
{items[0], items[1], ..}

* Why is the last item added outside the loop?

* Why do we need the i f statement?
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Implementing a List Using a Linked List

public class LLList implements List {
private Node head;
private int length;

}
. head > null "how" "are" "you"
11st: 'Iength: 3 - > > null
variflzll(_eiosf éype LLLA s:t object »dummy head node

Node b\bj‘ects
 Differences from the linked lists we used for strings:

* we "embed" the linked list inside another class
 users of our LLL1ist class won't actually touch the nodes

* we use non-static methods instead of static ones
myList.length() instead of Tength(myList)

* we use a special dummy head node as the first node

Using a Dummy Head Node

head . null "how" "are" "you"
» > null
length| 3 =
dummy head node

LLL1 st object

» The dummy head node is always at the front of the linked list.
* like the other nodes in the linked list, it's of type Node
* it does not store an item
+ it does not count towards the length of the list

» Using it allows us to avoid special cases when adding and
removing nodes from the linked list.

* Anempty LLL1ist still has a dummy head node:

| null

head >
null

Tength| o
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An Inner Class for the Nodes

public class LLList implements List {
private class Node { item| "hi"
private Object item;

private \private Node next;

next —

Sinco oily private Node(Object i, Node n) { Node object
LLList item = 13
will use it next = n;
}
}
}

* We make Node an inner class, defining it within LLList.

+ allows the LLL1ist methods to directly access Node’s private
fields, while restricting access from outside LLList
» the compiler creates this class file: LLList$Node.class

» For simplicity, our diagrams may show the items inside the nodes.

"hi" instead of —

—1

—>

Other Details of Our LLList Class

public class LLList implements List {
private class Node {
// see previous slide
}

private Node head;
private int length;

public LLList() {

head = new Node(nhull, null);
length = 0;

public boolean isFull() {
return false;
}
}

» Unlike ArrayList, there’s no need to preallocate space for the
items. The constructor simply creates the dummy head node.

+ The linked list can grow indefinitely, so the list is never full!
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Getting a Node
» Private helper method for getting node 1
* to get the dummy head node, use i = -1
private Node getNode(int i) {
// private method, so we assume 1 is valid/
Node trav = ;
int traviIndex = -1;
while ( ) {
travIindex++;
}
return trav;
} trav travindex| -1
example fori=1: -1, 0 1 2
item| null "how" "are" "you"
head > T
> > » nu
Tength| 3 next
LLLisfowéd NodedMéds

Getting an ltem

public Object getItem(int i) {
if (i <0 || i >= length) {
throw new IndexoutOofBoundsException();
}

Node n = getNode(i);
return ;

example fori=1:

-1 0 vl 2
item| null "how" "are" "you"
head > T
t > » » nu
Tength| 3 nex
LLList object Node objects
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Adding an Itemtoan LLList

public boolean addItem(Object item, int i) {
if (item == null || i <0 || i > length) {
throw new IllegalArgumentException();

Node newNode = new Node(item, null);
Node prevNode = getNode(i - 1);
newNode.next = prevNode.next;
prevNode.next = newNode;

length++;
return true;
}
» This works even when adding at the front of the list (i = 0):
-1 0 1 2
item| null "how" "are" "you"
head »

null

A 4

length| 4 next -

prevNode Iﬁ Thitt

newNode| —|—> /

addItem() Without a Dummy Head Node

public boolean additem(Object item, int i) {
if (item == null || i <0 || i > length) {
throw new ITlegalArgumentException();
}

Node newNode = new Node(item, null);

if (3 == 0) { // case 1: add to front
newNode.next = head;
head = newNode;
} else { // case 2: i >0
Node prevNode = getNode(i - 1);
newNode.next = prevNode.next;
prevNode.next = newNode;

}

length++;
return true;

}

(the gray code shows what we would need to add if we didn't have a dummy head node)
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Removing an ltem from an LLList

public Object removeItem(int i) {
if (A <0 || i >= Tength) {
throw new IndexoutofBoundsException();

}
Node prevNode = getNode(i - 1);
Object removed = prevNode.next.item;
// what Tine goes here?

length--;
return removed;

}

-'mswmmewnwmnmmwmgmemﬁnmnh=

removedl I » "how" you"
-1
/

1tem null

head
Tength| 3

next > » null

prevNode

tostring() Method for the LLList Class

pubTic String toStr1ng() {
String str = "{";

s/ what should go here?

str = str + "}";

return str;
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Efficiency of the List ADT Implementations

n = number of items in the list

ArrayList LLLiSst
getItem(Q) only one case: best:
worst:
average:
addrtem() best: best:
worst: worst:
average: average:

Example of Using a Reference to the Last Node

mylist.addItem("you", 99)

* before the call is made:

null "hey" "how" are
« —» null

length| 99 44__.—‘//////7
last

LLL1st object

head

A 4

A 4
A 4

« use last to add the new item's node to the end of the linked list:

null "hey" "how" are you
—»> - ——p » null

length| 99 44__.—‘//////7
last

head

A 4

A 4
A 4
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Example of Using a Reference to the Last Node (cont)

mylist.addItem("you", 99)

« after the call is made:

head | null "hey" "how" "are" "you"
7 > M —1 - —» null
length| 100 /
last

LLL1st object

Efficiency of the List ADT Implementations (cont.)

n = number of items in the list

ArraylList LLList
removeItem()| best: best:

worst: worst:

average:. average:

space
efficiency
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head
Tlength
last
beforeLast

mylist.removeItem(99)

« before the call is made:

null "hey" "how"

100

A 4

A 4
A 4

A Reference to the Second-to-Last Node Doesn't Help

LLL1ist object

head

| null "hey" "how"

Tlength

929

last

A 4
A 4

beforeLast

« we can use beforeLast to remove the last node and update 1ast:

—»| null

are you
null
"are" "you"
null

A Reference to the Second-to-Last Node Doesn't Help

« butin order to update beforeLast, we need to walk down the linked list!

head

mylist.removeItem(99)

null "hey" "how"

Tlength

929

last

A 4

A 4
A 4

—1 » ...

beforeLast

LLL1ist object

are

—»

null
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Counting the Number of Occurrences of an ltem

public class MyClass {
pubTic static int numOccur(List 1, Object item) {
int numoccur = 0;
for (int i = 0; i < 1.TlengthQ; i++) {
Object itemAt = 1.getItem(i);
if (itemAt.equals(item)) {
NUMOCCUr++;
}
}

return numoccur;

» This method works fine if we pass in an ArrayList object.
« time efficiency (as a function of the length, n) = ?

» However, it's not efficient if we pass inan LLL1ist.

» each call to getItem() calls getNode()

» to access item 0, getNode () accesses 2 nodes (dummy + node 0)
» to access item 1, getNode () accesses 3 nodes

» to access item i, getNode () accesses i+2 nodes

e 2+3+ ...+ (n¥1)=7?

Solution: Provide an lterator

public class MyClass {
public static int numoccur(List 1, Object item) {
int numoccur = 0;
ListIterator iter = 1.iterator(Q);
while (iter.hasNext()) {
Object itemAt = iter.next();
if (itemAt.equals(item)) {
numMOCCuUr++;
}
}

return numOccur;
}o.o..
« We add an iterator() method to the L1ist interface.

* it returns a separate iterator object that can efficiently
iterate over the items in the list

» The iterator has two key methods:
» hasNext(): tells us if there are items we haven't seen yet
« next(): returns the next item and advances the iterator
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An Interface for List Iterators

» Here again, the interface only includes the method headers:

public interface ListIterator { // in ListIterator.java
boolean hasNext();
Object next(Q);

}

+ We can then implement this interface for each type of list:
o LLListIterator for an iterator that works with LLLists
e ArrayListIterator for an iterator for ArrayLists

» We use the interfaces when declaring variables in client code:

public class MyClass {
public static int numoccur(List 1, Object item) {
int numOccur = 0;
ListIterator iter = 1.iterator();

 doing so allows the code to work for any type of list!

Using an Inner Class for the Iterator

public class LLList {
private Node head;
private int length;

private class LLListIterator implements ListIterator {
private Node nextNode; // points to node with the next item

public LLListIterator() {
nextNode = head.next; // skip over dummy head node
1
1

public ListIterator iterator(Q {
return new LLListIterator(Q);

}

* Using an inner class gives the iterator access to the list’s internals.

* The iterator() method is an LLL1ist method.
* it creates an instance of the inner class and returns it
* its return type is the interface type
« so it will work in the context of client code
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Full LLListIterator Implementation

private class LLListIterator implements ListIterator {
private Node nextNode; // points to node with the next item

public LLListIterator() {
nextNode = head.next; // skip over the dummy head node

public boolean hasNext() {
return (nextNode != null);
}

public object next() {
// throw an exception if nextNode 1is null

Object item =

nextNode = ;
return item; |"howu| |"are"| |"you"|
}
¥ item| null / 7 7
head > R R T
-Iength 3 next P » nu

LLList
object nextNode

LLListIterator object

Stack ADT \l_t‘

» A stack is a sequence in which:
* items can be added and removed only at one end (the top)
* you can only access the item that is currently at the top

» Operations:
» push: add an item to the top of the stack
* pop: remove the item at the top of the stack
» peek: get the item at the top of the stack, but don’t remove it
» isEmpty: test if the stack is empty
* isFull: test if the stack is full

+ Example: a stack of integers

start: push 8: 8 pop: pop: push 3:
15 15 15 3
7 7 7 7

CSCI E-22 Harvard Extension School 145



CSCI E-22

A Stack Interface: First Version

public interface Stack {
boolean push(Object item);
Object popQ);
Object peek();
boolean iseEmpty();
booTlean isFull();

}

push() returns false if the stack is full, and true otherwise.

pop () and peek() take no arguments, because we know that
we always access the item at the top of the stack.

* return nul1 if the stack is empty.

The interface provides no way to access/insert/delete an item
at an arbitrary position.
» encapsulation allows us to ensure that our stacks are
only manipulated in appropriate ways

Implementing a Stack Using an Array: First Version

public class ArrayStack implements Stack {

private Object[] items;
private int top; // index of the top item

public ArrayStack(int maxSize) {
// code to check for invalid maxSize goes here...

items = new Object[maxSize];

top = -1;
3
+ Example: the stack | 15
7
0 1 2
s1] l items| —p—> | | [null]
N ==
7
variable of type ] - v
ArrayStack ArrayStack object | 15 |

* Items are added from left to right (top item = the rightmost one).
» push() and pop () won't require any shifting!
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Collection Classes and Data Types

pubTlic class ArrayStack implements Stack {
private Object[] items;

private int top; // index of the top item
} 0 1 2 3
items| —1—» | [nuTl | null]
sl > | \
_— s ——
7

» So far, our collections have allowed us to add objects of any type.
ArrayStack sl = new ArrayStack(4);

| ]

sl.push(7); // 7 is turned into an Integer object for 7
sl.push("hi™);
String item = sl.popQ); // won't compile

String item = (String)sl.pop(Q); // need a type cast

+ We'd like to be able to limit a given collection to one type.

ArrayStack<String> s2 = new ArrayStack<String>(10);

s2.push(7); // won't compile
s2.push("hello™);

String item = s2.popQ); // no cast needed!

Limiting a Stack to Objects of a Given Type

+ We can do this by using a generic interface and class.

» Here's a generic version of our Stack interface:
pubTlic interface Stack<T> {
boolean push(T item);
T popQ);
T peek();
boolean iseEmpty();
boolean isFull();
3

» ltincludes a type variable T in its header and body.
» used as a placeholder for the actual type of the items
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A Generic ArrayStack Class

public class ArrayStack<T> implements Stack<T> {
private T[] items;

private int top; // index of the top item
public boolean push(T item) {

}
}

» Once again, a type variable T is used as a placeholder for the
actual type of the items.

+ When we create an ArrayStack, we specify the type of items
that we intend to store in the stack:

ArrayStack<String> sl = new ArrayStack<String>(10);
ArrayStack<Integer> s2 = new ArrayStack<Integer>(25);

» We can still allow for a mixed-type collection:
ArrayStack<object> s3 = new ArrayStack<Object>(20);

Using a Generic Class

public class ArrayStack<String> {
private String[] items;
private int top;

ﬁﬂB]ic boolean push(String item) {

ArrayStack<String> sl =
new ArrayStack<String>(10);

public class ArrayStack<T> ... {
private T[] items;
private int top;

ﬁﬂ61ic boolean push(T item) {

ArrayStack<Integer> s2 =
new ArrayStack<Integer>(25);

public class ArrayStack<Integer> {
private Integer[] items;
private int top;

bGB1ic boolean push(Integer item) {
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ArrayStack Constructor

+ Java doesn'’t allow you to create an object or array using
a type variable. Thus, we cannot do this:
public Arraystack(int maxSize) {

// code to check for invalid maxSize goes here...

items = new T[maxSize]; // not allowed
top = -1;
}

* Instead, we do this:
public Arraystack(int maxSize) {

// code to check for invalid maxSize goes here...

items = (T[]D)new Object[maxSize];
top = -1;
}

» The cast generates a compile-time warning, but we’ll ignore it.

» Java’s built-in ArrayList class takes this same approach.

Testing if an ArrayStack is Empty or Full
+ Empty stack:

ftems[] —3+—— [ | [ [ [ [ I | |
top| -1

public boolean iseEmpty() {

return (top == -1);
}
» Full stack:
. 0 1 2 3 4 5 6 7 8
ftems| —4—— [ | [ [ [ T T [ |
top| 8

public boolean isFull(Q {
return (top == items.length - 1);
}
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Pushing an Item onto an ArrayStack

ftems| 34— [ [ | [ | [ [ | |
top| 4

pubTic boolean push(T item) {
// code to check for a null item goes here
if (isFullQ) {
return false;
}

top++;
items[top] = item;
return true;

ArrayStack pop() and peek()
0 1 2 3 4 5 6 7
items __>|

| | | | | | [ |nu11|nu11|nu11|nu11|
top v v v v

Gol 1G] 63

w

removed

public T pop( {
if (isEmpty(Q)) {
return null;
3

removed = items[top];
items[top] = null;

top--;

return removed;

}

* peek just returns items[top] without decrementing top.
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Implementing a Generic Stack Using a Linked List

public class LLStack<T> implements Stack<T> {

private Node top; // top of the stack
,
+ Example: the stack 15
7
s2 | I
top > null

variable of type

LLStack LLStack object

Nodébbmcw‘
» Things worth noting:

* our LLStack class needs only a single field:
a reference to the first node, which holds the top item

+ top item = leftmost item (vs. rightmost item in ArrayStack)
* we don’'t need a dummy node
» only one case: always insert/delete at the front of the list!

Other Details of Our LLStack Class

public class LLStack<T> implements Stack<T> {
private class Node {
private T 1item;
private Node next;

}

private Node top;

public LLStack() {
top = null;

pubTlic boolean isEmpty() {
return (top == null);

1

public boolean isFull() {
return false;

}

3
« The inner Node class uses the type parameter T for the item.
+ We don’t need to preallocate any memory for the items.
+ The stack is never full!
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LLStack push()

top: > » null

newNodel —|—> /

public boolean push(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, top);
top = newNode;
return true;

LLStack push()

t *x—>»
°p|A_‘< null

e N2/

A 4

newNodel —|—> /

public boolean push(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, top);
top = newNode;
return true;
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LLStack pop() and peek()
removed | —|—>| 15 | | 7 |

top T null

A\ 4

public T pop( {
if CisEmpty(Q)) {
return null;
}

T removed =

return removed;

}

public T peek() {
if (isEmpty() {
return null;
}

return top.item;

Efficiency of the Stack Implementations

ArrayStack LLStack
pushQ o(1) o(1)
pop O o(1) o(1)
peek o(1) o(1)
space O(m) where m is the O(n) where n is the number of
efficiency g?it{gir;r):ted maximum number | items currently on the stack
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Applications of Stacks

» Converting a recursive algorithm to an iterative one
* use a stack to emulate the runtime stack

« Making sure that delimiters (parens, brackets, etc.) are balanced:
* push open (i.e., left) delimiters onto a stack

» when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

* example:
5% [3+ {(5+ 16 - 2)]

push [ push { push ( ( ), so 1,50
pop. pop.

get , | 1 get {,

which which

L L L matches L doesn’t L
. . . . match
» Evaluating arithmetic expressions
Queue ADT e
<= <=

* A queue is a sequence in which:
 items are added at the rear and removed from the front

« first in, first out (FIFO) (vs. a stack, which is last in, first out)

* you can only access the item that is currently at the front

» Operations:
* insert: add an item at the rear of the queue
» remove: remove the item at the front of the queue
* peek: get the item at the front of the queue, but don’t remove it
» isEmpty: test if the queue is empty
« isFull: test if the queue is full

+ Example: a queue of integers
stat: 12 8
insert5: 12 8 5

remove: 8 5
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Our Generic Queue Interface

public interface Queue<T> {
boolean insert(T item);
T remove();
T peek();
boolean iseEmpty();
booTlean isFull();

* dnsert() returns false if the queue is full, and true otherwise.

* remove() and peek() take no arguments, because
we always access the item at the front of the queue.

* return null if the queue is empty.

» Here again, we will use encapsulation to ensure that the
data structure is manipulated only in valid ways.

Implementing a Queue Using an Array

public class ArrayQueue<T> implements Queue<T> {
private T[] items;
private int front;
private int rear;
private int numItems;

}
+ Example: 0 1 2 3
itens[ o[ T [ ]
queue >
: front| 1
:
variable of type rear| 3 ¥ +
ArrayQueue numItems| 3 | 25 | | 51 |

‘ArrayQueue object

+  We maintain two indices:
« front: the index of the item at the front of the queue
« rear: the index of the item at the rear of the queue
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Avoiding the Need to Shift Items

Problem: what do we do when we reach the end of the array?

example: a queue of integers:
front rear

[54 ] 4 |21 ]17 89 65| | |

the same queue after removing two items and inserting two:
front rear

[ | [21]17]89]65]43]81]

we have room for more items, but shifting to make room is inefficient

Solution: maintain a circular queue. When we reach the end of
the array, we wrap around to the beginning.

insert 5: wrap around!
rear front

[ s | |21]17]89]65]43]81]

Maintaining a Circular Queue

* We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;
rear = (rear + 1) % items.length;

+ Example: front rear
items ——>| | 21 | 17 | 89 | 43 | |
q: front 1
rear 4
numItems 4
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Maintaining a Circular Queue

» We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;
rear = (rear + 1) % items.length;

+ Example: front rear
items[ —]——» |21 ] 17 |89 |43 ] 81|
q >
: front 1
rear 5
numItems 5
e g.insert(81l): // rear 1s not at end of array
e rear = (rear + 1) % items.length;
=(C 4 +1D% 6
= 5 % 6 =5 (% has no effect)

Maintaining a Circular Queue

* We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;
rear = (rear + 1) % items.length;

+ Example: rear front
items| —}—» 33 [ 21 [ 17 | 89 | 43 | 81 |
q >
: front 1
rear 0
numItems 6
e q.insert(81): // rear is not at end of array
e rear = (rear + 1) % items.length;
=(C 4 +1)% 6
= 5 % 6 =5 (% has no effect)

« q.insert(33): s/ rear is at end of array

e rear = (rear + 1) % items.length;
=(C 5 +1 % 6
6

= 6 % =0 wrap around!
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Inserting an Item in an ArrayQueue
* We increment rear before adding the item:

front rear

beiorer | | P ] ]

front rear

ater [ T [T T T TN ]

pubTic boolean insert(T item) {
// code to check for a null item goes here
if GsFullQ)) {
return false;
}

rear = (rear + 1) % items.length;
items[rear] = item;

numItems++;

return true;

ArrayQueue remove()

front rear
before: | | [ [Py byl 1]
v v v
Lol ] O 5]
front rear
after: | [ Joun1] | ]

removed 10 || || 9 || 13|

public T remove() {
if (isEmpty()) {
return null;

}

T removed =

numItems--;
return removed;
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Constructor

public ArrayQueue(int maxSize) {
// code to check for an invalid maxSize goes here...
items = (T[])new Object[maxSize];
front = 0;
rear = -1;
numItems = O;

}

* When we insert the first item in a newly created ArrayQueue,
we want it to go in position 0. Thus, we need to:

» start rear at -1, since then it will be incremented to 0
and used to perform the insertion

« start front at 0, since it is not changed by the insertion

0 1 0 1
items| —— null | null | .. items| —1—f [ null | ..
front| 0 front| 0

rear| -1 rear| O ii
numItems| O numItems| 1 | "hi" |

Testing if an ArrayQueue is Empty or Full

* In both empty and full queues, rear is one "behind" front:
rear front

initial configuration: | | | | | | | |

rear front
after two insertions and | | | | | | | |

two removals:

rear front

after 7 more insertions: | 5 | 36 | 21 | 17 | 89 | 65 | 43 |

» This is why we maintain numItems!

public boolean isEmpty() {
return (numItems == 0);

}

pubTlic boolean isFull() {
return (numItems == items.length);

}
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Implementing a Queue Using a Linked List

public class LLQueue<T> implements Queue<T> {

private Node front; s/ front of the queue
private Node rear; // rear of the queue
}
| "hi"| |"howu| |uare"| |"you"|
+ Example: T T T
item| | | | !
front >
queuel I »> next > > » null
rear |
J

variable of type ;
LLQueue LLQueue object

Nodedwéds

* In alinked list, we can efficiently:
* remove the item at the front
* add an item to the rear (if we have a ref. to the last node)

» Thus, this implementation is simpler than the array-based one!

Other Details of Our LLQueue Class

public class LLQueue<T> implements Queue<T> {
private class Node {
private T 1item;
private Node next;

}

private Node front;
private Node rear;

public LLQueue() {
front = null;
rear = null;

}
pubTlic boolean isEmpty() {
return (front == null);

1

pubTic boolean isrFull() {
return false;

}
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Inserting an Item in an Empty LLQueue

front| null
rear| null
] — The next field in the newNode
item| ! [“now | will be nu11 regardless of whether
T .
[ the queue is empty. Why?

Nod | I >
newNode noll

public boolean insert(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, null);
if CisEmpty()) {
front = newNode;
rear = newNode;
} else {
// we'll add this later!

}

return true;

Inserting an Item in a Non-Empty LLQueue

| "hi" | |"how"| |"are"| |"you"|
T
front ! ! ! |
rear ~— > > > \
\T — "now"
item _\

newNodel I > ol

public boolean insert(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, null);
if Gisempty()) {

front = newNode; A. rear = newNode;
rear = newNode; rear.next = newNode;
} else {

B. rear.next = newNode;
rear = newNode;

either Aor B
neither A nor B

o

}

return true; D
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Removing from an LLQueue with One Item

renoved[—]

front 7
rear 14—

A 4

public T remove() {
if (isEmpty()) {
return null;

}
T removed = ;
if (front == rear) { // removing the only item

front = null;

rear = null;
} else {

// we'll add this later
}

return removed;

Removing from an LLQueue with Two or More ltems

removedl 5—>|m| |"how"| |"are“| |"you"|
1 1 T 1

: % [ [ [ [

rear N \\\\\\\‘“‘¥__‘//J§ > > null
E— 4

front

public T remove() {
if Gisempty()) {
return null;

}

T removed = ;

if (front == rear) { // removing the only item
front = null;
rear = null;

} else {

}

return removed;
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Efficiency of the Queue Implementations

ArrayQueue LLQueue
insert() o(1) o(1)
remove () o(1) o(1)
peek O o(1) o(1)
space O(m) where m is the O(n) where n is the number of
efficiency anticipated maximum number | items currently in the queue

of items

Applications of Queues

« first-in first-out (FIFO) inventory control

» OS scheduling: processes, print jobs, packets, etc.

« simulations of banks, supermarkets, airports, etc.
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Binary Trees and Huffman Encoding

Computer Science E-22

Harvard University

David G. Sullivan, Ph.D.

Motivation: Implementing a Dictionary

» A data dictionary is a collection of data with two main operations:

» search for an item (and possibly delete it)
* insert a new item

» If we use a sorted list to implement it, efficiency = O(n).

data structure

searching for an item

inserting an item

a list implemented using
an array

O(log n)
using binary search

O(n)
because we need to shift
items over

a list implemented using
a linked list

O(n)
using linear search

(binary search in a linked
listis O(nlogn))

O(n)

(O(1) to do the actual
insertion, but O(n) to find
where it belongs)

* In the next few lectures, we’ll look at how we can use a tree
for a data dictionary, and we'll try to get better efficiency.

« We’'ll also look at other applications of trees.
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What Is a Tree?

root

node

\

edge

» A tree consists of:
* aset of nodes
» a set of edges, each of which connects a pair of nodes

» Each node may have one or more data items.
» each data item consists of one or more fields
» key field = the field used when searching for a data item
+ data items with the same key are referred to as duplicates

» The node at the "top" of the tree is called the roof of the tree.

Relationships Between Nodes

» Ifanode N is connected to nodes directly below it in the tree:
* N is referred to as their parent
 they are referred to as its children.
« example: node 5 is the parent of nodes 10, 11, and 12

Each node is the child of at most one parent.

Nodes with the same parent are siblings.
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Relationships Between Nodes (cont.)

* A node’s ancestors are its parent, its parent’s parent, etc.
* example: node 9’s ancestors are 3 and 1

* A node’s descendants are its children, their children, etc.
+ example: node 1’s descendants are all of the other nodes

Types of Nodes

* A Jeaf node is a node without children.

» An interior node is a node with one or more children.
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A Tree is a Recursive Data Structure

« Each node in the tree is the root of a smaller tree!

« refer to such trees as subtrees to distinguish them from
the tree as a whole

» example: node 2 is the root of the subtree circled above
+ example: node 6 is the root of a subtree with only one node

+ We'll see that tree algorithms often lend themselves to
recursive implementations.

Path, Depth, Level, and Height

<+— Jevel 0

<+— |evel 1

depth=2 ——» <+— |evel 2

» There is exactly one path (one sequence of edges) connecting
each node to the root.

» depth of a node = # of edges on the path from it to the root
* Nodes with the same depth form a level of the tree.

» The height of a tree is the maximum depth of its nodes.
» example: the tree above has a height of 2
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Binary Trees

* In a binary tree, nodes have at most two children.
+ distinguish between them using the direction left or right

* Recursive definition: a binary tree is either:
1) empty, or
2) a node (the root of the tree) that has:
* one or more pieces of data (the key, and possibly others)
* a left subtree, which is itself a binary tree
* a right subtree, which is itself a binary tree

Which of the following is/are not true?

(26
(1) (32)
OROME
@

This tree has a height of 4.

There are 3 leaf nodes.

The 38 node is the right child of the 32 node.

The 12 node has 3 children.

more than one of the above are not true (which ones?)

moow>
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Representing a Binary Tree Using Linked Nodes

pubTlic class LinkedTree {
private class Node {
private int key;
private LLList data;
private Node Teft;
private Node right;

// 1imit ourselves to int keys
// Tist of data for that key
// reference to left child

// reference to right child
1

private Node root;

Representing a Binary Tree Using Linked Nodes
pubTlic class LinkedTree {

private class Node { key (not showing
private int key; Teft |right] data field)
private LLList data; - A
private Node left; /
private Node right; ref. to left child ref. to right child
} (nu11 if none) (nu11 if none)
private Node root; 26
} |
root ‘/ \‘
@ 12 32
LinkedTree
object / | \ mml \\

4 18 38

o @ @ nu'I'I| \ nu'I'I|nu'I'I nu'I'I|nu'I'I
@ :

null |nu'|'|
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Traversing a Binary Tree

» Traversing a tree involves visiting all of the nodes in the tree.
+ visiting a node = processing its data in some way
» example: print the key

+ We'll look at four types of traversals.
« each visits the nodes in a different order

» To understand traversals, it helps to remember that every node
is the root of a subtree.

&—— 32 s the root of
\\ 26’s right subtree

12 is the root of _/,;
26’s left subtree

4 is the root of
12’s left subtree

1: Preorder Traversal

» preorder traversal of the tree whose root is N:
1) visit the root, N
2) recursively perform a preorder traversal of N’s left subtree
3) recursively perform a preorder traversal of N’s right subtree

» preorder because a node is visited before its subtrees

» The root of the tree as a whole is visited first.
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Implementing Preorder Traversal

public class LinkedTree {
private Node root;

public void preorderPrint() {
if (root != null) {
preorderPrintTree(root);
}

System.out.printin(Q;
3

private static void preorderPrintTree(Node root) {
System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left); Not always the

same as the root

if (root.right != null) { of the entire tree.

preorderPrintTree(root.right);
}
}
« preorderPrintTree() is a static, recursive method that takes
the root of the tree/subtree that you want to print.

- preorderPrint() is a non-static "wrapper" method that makes
the initial call. It passes in the root of the entire tree.

Tracing Preorder Traversal

void preorderPrintTree(Node root) { o
System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left); e e

}
if (root.right != null) {
preorderPrintTree(root.right); e e a
}
’ , (4)
base case, since
neither recursive
call is made! order in which nodes are visited:
we go back
root: @ up the tree
print 4 by returning!
root: root: root: root: @
print 8 print 6
root: @ root: (9) root: (9) root: (9) root: (@) |  root: ®
print 9
root: @ root: @ root: (7) root: (7) root: (7) root: (7) root: (7)
print 7
time
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Using Recursion for Traversals

void preorderPrintTree(Node root) {
System.out.print(root.key + " "); 0
if (root.left != null) {

preorderPrintTree(root.left); e e
}
if (root.right != null) {
preorderPrintTree(root.right); e e 6
}
J - (4)
base case, since
neither recursive ) ) o
call is made! order in which nodes are visited:

we go back
root: @ up the tree
print 4 by returning!

root: root: root: root: @

print 8 print 6

» Using recursion allows us to easily go back up the tree.

E * Using a loop would be harder. Why?

2: Postorder Traversal

» postorder traversal of the tree whose root is N:
1) recursively perform a postorder traversal of N’s left subtree

2) recursively perform a postorder traversal of N’s right subtree
3) visit the root, N

» postorder because a node is visited after its subtrees

» The root of the tree as a whole is visited last.
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Implementing Postorder Traversal

public class LinkedTree {
private Node root;

public void postorderPrint() {
if (root != null) {
postorderPrintTree(root);
3

System.out.println(Q);
}

private static void postorderPrintTree(Node root) {
if (root.left != null) {
postorderPrintTree(root.left);
}

if (root.right !'= null) {
postorderPrintTree(root.right);
}

System.out.print(root.key + " ");
}

* Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal

void postorderPrintTree(Node root) { 0
if (root.left != null) {
postorderPrintTree(root.left);

} o) (5)

if (root.right != null) {

postorderPrintTree(root.right);
) @ (& (2

System.out.print(root.key + " ");
} o

order in which nodes are visited:

root: @

print 4

root: root: root: root: @

print 8 print 6

root: @ root: @ root: @ root: @ root: @ root: @

root: @ root: @ root: (7) root: (7) root: (7) root: (7) root: (7)

time
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3: Inorder Traversal

+ inorder traversal of the tree whose root is N:
1) recursively perform an inorder traversal of N’s left subtree
2) visit the root, N

3) recursively perform an inorder traversal of N’s right subtree

* The root of the tree as a whole is visited between its subtrees.

+ We'll see later why this is called inorder traversal!

Implementing Inorder Traversal

public class LinkedTree {
private Node root;

pubTlic void inorderPrint() {
if (root != null) {
inorderPrintTree(root);
}

System.out.printin(Q);
}

private static void inorderPrintTree(Node root) {
if (root.left != null) {
inorderPrintTree(root.left);
}

System.out.print(root.key + " ");

if (root.right !'= null) {
inorderPrintTree(root.right);
}

* Note that the root is printed between the two recursive calls.
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Tracing Inorder Traversal

void inorderPrintTree(Node root) { a
if (root.left != null) {
inorderPrintTree(root.left);

} (o) (s)

System.out.print(root.key + " ");
if (root.right !'= null) {

inorderPrintTree(root.right); e e 6
}

: O

order in which nodes are visited:

root: @
print 4
root: root: root: root: @
print 8 print 6
root: @ root: @ root: @ root: @ root: @ root: @
print 9
root: (7) root: (7) root: @ root: @ root:@ root: @ root: @
time

Level-Order Traversal

» Visit the nodes one level at a time, from top to bottom
and left to right.

» Level-order traversal of the tree above: 7 9 5 8 6 2 4

» We can implement this type of traversal using a queue.
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Tree-Traversal Summary

preorder:  root, left subtree, right subtree
postorder: left subtree, right subtree, root
inorder: left subtree, root, right subtree
level-order: top to bottom, left to right

» Perform each type of traversal on the tree below:

(®
(15) Q
ONOBNONO
12 (&) ONCD
(2

Tree Traversal Puzzle
» preorder traversal: AMPKLDHT
« inorder traversal: PMLKAHTD

* Draw the tree!

» What's one fact that we can easily determine from one
of the traversals?
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Using a Binary Tree for an Algebraic Expression

+ WEe'll restrict ourselves to fully parenthesized expressions
using the following binary operators: +, —, *, /

« Example: ((a + 3 * c)) - (d/ 2))

» Leaf nodes are variables or constants.

* Interior nodes are operators.
+ their children are their operands

Traversing an Algebraic-Expression Tree

* Inorder gives conventional ’

algebraic notation.
 print ‘(" before the recursive o o

call on the left subtree e ° 0 e

 print )’ after the recursive
call on the right subtree Q e

» fortree atright: ((a + (b * ¢)) - (d / e))

» Preorder gives functional notation.
» print ‘("s and ‘)’s as for inorder, and commas after the
recursive call on the left subtree
» for tree above: subtr(add(a, mult(b, c)), divide(d, e))

» Postorder gives the order in which the computation must be
carried out on a stack/RPN calculator.

 for tree above: push a, push b, push c, multiply, add,..
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Fixed-Length Character Encodings

A character encoding maps each character to a number.

Computers usually use fixed-length character encodings.

» ASCII - 8 bits per character

char | dec binary
'a' | 97 01100001
'b' | 98 01100010
't' | 116 01110100

example: "bat" is stored in a text

file as the following sequence of bits:

01100010 01100001 01110100

» Unicode - 16 bits per character
(allows for foreign-language characters; ASCIl is a subset)

Fixed-length encodings are simple, because:
+ all encodings have the same length
* a given character always has the same encoding

A Problem with Fixed-Length Encodings

They tend to waste space.

Example: an English newspaper article with only:
 upper and lower-case letters (52 characters)
» spaces and newlines (2 characters)
« common punctuation (approx. 10 characters)
« total of 64 unique characters = only need ___ bits

We could gain even more space if we:
» gave the most common letters shorter encodings (3 or 4 bits)
» gave less frequent letters longer encodings (> 6 bits)
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Variable-Length Character Encodings

» Variable-length encodings compress a text file by:
 using encodings of different lengths for different characters

 assigning shorter encodings to frequently occurring characters

+ Example: if we had only four characters

e |01
o |[100
s 111
t |00

"test" would be encoded as
00 01 111 00 -> 000111100

» Challenge: when reading a document, how do we determine
the boundaries between characters?

* how do we know how many bits the next character has?

* One requirement: no character's encoding can be the prefix of
another character's encoding (e.g., couldn't have 00 and 001).

Huffman Encoding

* One type of variable-length encoding

+ Based on the actual character frequencies in a given document

« different documents have different encodings

» Huffman encoding uses a binary tree:
» to determine the encoding of each character
 to decode / decompress an encoded file
* putting it back into ASCII
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+ Example for a text with

Huffman Trees

only six characters:

+ Left branches are labeled with a 0, right branches with a 1.
» Leaf nodes are characters.

* To get a character's encoding, follow the path from the root

to its leaf node.
* example:i=?

Building a Huffman Tree
1) Begin by reading through the text to determine the frequencies.

2) Create a list of nodes containing (character, frequency) pairs
for each character in the text — sorted by frequency.

'o' ! 'a' 's' 't' 'e' Z
11 23 25 26 27 40 means

null
2 | i L

3) Remove and "merge" the nodes with N
the two lowest frequencies, forming a 34
new node that is their parent.

* left child = lowest frequency node |

* right child = the other node o‘( \‘1
+ frequency of parent = sum of the 11 23
frequencies of its children
- in this case, 11 + 23 = 34 L
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Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes (maintaining sorted order):

'a' 'S' 't' — lel
25 26 27 34 40
| L\ L
¥ N
|O| |_i|
11 23
L

5) Repeat steps 3 and 4 until there is only a single node in the list,
which will be the root of the Huffman tree.

Completing the Huffman Tree Example |

» Merge the two remaining nodes with the lowest frequencies:

'a' ISI 't' - e
25 26 27 34 40
| [\ L
¥ N
'0' '.i'
11 23
L
't' _ 'eI —_
27 34 40 51
[\ L N
¥ N ¥ N
lol l_i' 'a| 's'
11 23 25 26
L
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L]

Completing the Huffman Tree Example Il
Merge the next two nodes:

o - -
27 34 40 51
\ | ] |
4 e Ny
v s Py pr
11 23 25 26
L]
Y . .
40 51 61
1 | [
¥ b K N
per n
25 26 27 34
|
o o
11 23
7

Completing the Huffman Tree Example Il

Merge again:
o -
40 51
171
K
25 26

61 91
| I
b '
- 'e' -
34 40 51
Va { N, |\
b
o' oy T oy
11 23 25 26
v
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Completing the Huffman Tree Example IV

+ The next merge creates the final tree:

152

// | \\
61 91
| |
¥ N ¥ MY
P _
27 34 40 51
| I
¥ N ¥ N
i ‘q’
11 23 25 26
L] L]

Characters that appear more frequently end up higher in the tree,
and thus their encodings are shorter.

The Shape of the Huffman Tree

» The tree on the last slide is fairly symmetric.

» This won't always be the case!
» depends on the character frequencies

» For example, changing the frequency of 'o' from 11 to 21
would produce the tree shown below:

» This is the tree that we'll use in the remaining slides.
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Huffman Encoding: Compressing a File
1) Read through the input file and build its Huffman tree.

2) Write a file header for the output file.
* include the character frequencies so the tree can be rebuilt

when the file is decompressed
3) Traverse the Huffman tree to create a table containing the
encoding of each character:

—~ |»n | O

4) Read through the input file a second time, and write the
Huffman code for each character to the output file.

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,
return to the root, and continue reading bits
The tree allows us to easily overcome the challenge of
determining the character boundaries!
example: 101111110000111100
first character = i
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What are the next three characters?

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child

when you read a bit of 0, go to the left child

when you reach a leaf node, record the character,
return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 111110000111100
first character = i (101)
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Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,
return to the root, and continue reading bits
The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 00
101 = right,left,right

=
111 = right,right,right= s
110 = rightrright,left = a
00 = left,left =t
01 = left,right = e
111 = right,right,right= s
00 = left,left =t
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Search Trees

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Binary Search Trees

+ Search-tree property: for each node k (k is the key):
+ all nodes in k’s left subtree are < k
 all nodes in k’s right subtree are >= k

* Our earlier binary-tree example is
a search tree:

o, [

« With a search tree, an inorder traversal visits the nodes in order!

* in order of increasing key values
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Searching for an Item in a Binary Search Tree

» Algorithm for searching for an item with a key k:

if k == the root node’s key, you’re done
else if k < the root node’s key, search the left subtree
else search the right subtree

* Example: search for 7

Implementing Binary-Tree Search

public class LinkedTree { // Nodes have keys that are ints
private Node root;

pubTic LLList search(int key) { // "wrapper method"
Node n = searchTree(root, key); // get Node for key
if (n == null) {

return null; // no such key
} else {
return n.data; // return Tist of values for key
3
}
private static Node searchTree(Node root, int key) {
if ( ) {
} else if ( ) { two base cases
(order matters!)
} else if ( ) {
} else { tyvo
recursive cases
}
}
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Inserting an Item in a Binary Search Tree

public void insert(int key, Object data)
will add a new (key, data) pair to the tree

Example 1: a search tree containing student records
» key = the student's ID number (an integer)
» data = a string with the rest of the student record
* we want to be able to write client code that looks like this:

LinkedTree students = new LinkedTree();
students.insert(23, "Ji1l Jones,sophomore,comp sci");
students.insert(45, "Al zhang,junior,english");

Example 2: a search tree containing scrabble words
* key = a scrabble score (an integer)
» data = a word with that scrabble score

LinkedTree tree = new LinkedTree(Q);
tree.insert(4, "lost");

Inserting an Item in a Binary Search Tree (cont.)

To insert an item (k, d), ?cxlegIeiinsert(BS

"photooxidizes")

we start by searching for k.

If we find a node with key k, we add
d to the list of data values for that node.

* example: tree.insert(4, "sail")

If we don’t find k, the last node seen
in the search becomes the parent P
of the new node N.

 if k < P’s key, make N the left child of P
+ else make N the right child of P

Special case: if the tree is empty,
make the new node the root of the tree.

Important: The resulting tree is still a search tree!
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Implementing Binary-Tree Insertion

« We'llimplement part of the insert () method together.
* We'll use iteration rather than recursion.

* Our method will use two references/pointers: parent

* trav: performs the traversal down
to the point of insertion @

* parent: stays one behind trav

s
« like the trail reference that we @ @

sometimes use when traversing

a linked list ° @ @
()

trav

Implementing Binary-Tree Insertion

public void insert(int key, Object data) { insert 35: i
Node parent = null; o rav
Node trav = root;
while (trav != null) {

if (trav.key == key) {
trav.data.addIitem(data, 0); @ @

return;

}/ what should go here? 0 @ @
@

parent

}

Node newNode = new Node(key, data);

if (root == null) { // the tree was empty
root = newNode;

} else if (key < parent.key) {
parent.left = newNode;

} else {
parent.right = newNode;

1
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Deleting Items from a Binary Search Tree

» Three cases for deleting a node x

» Case 1: x has no children.
Remove x from the tree by setting its parent’s reference to null.

ex: delete 4

+ Case 2: x has one child.
Take the parent’s reference to x and make it refer to x’s child.

ex: delete 12

Deleting ltems from a Binary Search Tree (cont.)

+ Case 3: x has two children
* we can't give both children to the parent. why?

* instead, we leave x's node where it is, and we replace its
key and data with those from another node

* the replacement must maintain the search-tree inequalities

ex:
delete 12

two options: which ones?
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Deleting Items from a Binary Search Tree (cont.)

» Case 3: x has two children (continued):

* replace x's key and data with those from the smallest node
in x’s right subtree—call it y

+ we then delete y
« it will either be a leaf node or will have one right child. why?

« thus, we can delete it using case 1 or 2

ex: delete 12

copy node y's

contents into delete @ X
node x node y

Which Node Would Be Used To Replace 97?

(®)
(4) (1)
ONOMOND
ONO ONO
@D

A 4
B. 8
C. 10
D. 15
E. 17
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Implementing Deletion delete 26:

public LLList delete(int key) { parent
// Find the node and its parent. «  tav
Node parent = null; @
Node trav = root; @
while (trav != null && trav.key != key) {
parent = trav;
if (key < trav.key) { @ @
trav = trav.left;
} else {
trav = trav.right; @

, ! (35)
// Delete the node (if any) and return the removed 1items.
if (trav == null) { // no such key

return null;
} else {

LLList removedData = trav.data;

deleteNode(trav, parent); // call helper method
return removedData;

Implementing Case 3

private void deleteNode(Node toDelete, Node parent) {
if (tobelete.left != null && toDelete.right != null) {
// Find a replacement - and

// the replacement's parent. toDelete
Node replaceParent = toDelete;

// Get the smallest item @

// in the right subtree.

Node replace = toDelete.right;

// what should go here? @ @

// Replace toDelete's key and data @
// with those of the replacement 1item.

toDelete.key = replace.key;

toDelete.data = replace.data;

// Recursively delete the replacement
// item's old node. It has at most one
// child, so we don't have to
// worry about infinite recursion.
deleteNode(replace, replaceParent);

} else {
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Implementing Cases 1 and 2

private void deleteNode(Node toDelete, Node parent) {
if (tobelete.left != null && toDelete.right != null) {

} else {
Node toDeletechild;

if (tobelete.left != null)

e1$etoDe1eteChﬂd = toDelete.left; @ parent
toDeleteChild = toDelete.right; K/

// Note: in case 1, toDeletechild @ @

// will have a value of null. ‘L////toDdem

if (toDelete == root)
root = toDeletecChild;

else if (tobelete.key < parent.key)
parent.left = toDeletechild;

else
parent.right = toDeletechild; toDeleteChild
}
}
Recall: Path, Depth, Level, and Height
<+— Jevel 0
<+— Jevel 1
depth=2 ——» <+— |evel 2

» There is exactly one path (one sequence of edges) connecting
each node to the root.

» depth of a node = # of edges on the path from it to the root
* Nodes with the same depth form a level of the tree.

» The height of a tree is the maximum depth of its nodes.
« example: the tree above has a height of 2
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Efficiency of a Binary Search Tree

» For a tree containing n items, what is the efficiency
of any of the traversal algorithms?

» you process all n of the nodes
» you perform O(1) operations on each of them

» Search, insert, and delete all have the same time complexity.
* insert is a search followed by O(1) operations
+ delete involves either:
« a search followed by O(1) operations (cases 1 and 2)

+ a search partway down the tree for the item,
followed by a search further down for its replacement,
followed by O(1) operations (case 3)

Efficiency of a Binary Search Tree (cont.)

+ Time complexity of searching:
* best case:

e worst case:

» you have to go all the way down to level h
before finding the key or realizing it isn't there

« along the path to level h, you process h + 1 nodes

¢ average case:

* What is the height of a tree containing n items?
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Balanced Trees

A tree is balanced if, for each of its nodes, the node’s subtrees
have the same height or have heights that differ by 1.
+ example:
+ 26: both subtrees have a height of 1

+ 12: left subtree has height 0

right subtree is empty (height = -1)
+ 32: both subtrees have a height of 0
« all leaf nodes: both subtrees are empty

For a balanced tree with n nodes, height = O(log n)

+ each time that you follow an edge down the longest path,
you cut the problem size roughly in half!

Therefore, for a balanced binary search tree, the worst case
for search / insert / delete is O(h) = O(log n)

+ the "best" worst-case time complexity

What If the Tree Isn't Balanced?

Extreme case: the tree is equivalent to a linked list
* height=n -1

Therefore, for a unbalanced
binary search tree, the worst case
for search / insert / delete is O(h) = O(n)

+ the "worst" worst-case time complexity

We’'ll look next at search-tree variants
that take special measures to ensure balance.
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2-3 Trees

* A 2-3 tree is a balanced tree in which:
 all nodes have equal-height subtrees (perfect balance)
» each node is either
* a 2-node, which contains one data item and 0 or 2 children
* a 3-node, which contains two data items and O or 3 children
+ the keys form a search tree

+ Example:

3-node: K k2

fah o o

Search in 2-3 Trees

+ Algorithm for searching for an item with a key k:
if k == one of the root node’s keys, you’re done
else if k < the root node’s first key A A A
search the left subtree
else if the root is a 3-node and k < its second key
search the middle subtree

else
search the right subtree

» Example: search for 87
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Insertion in 2-3 Trees

» Algorithm for inserting an item with a key k:

search for k, but don’t stop until you hit a leaf node
let L be the leaf node at the end of the search

if L is a 2-node

add k to L, making it a 3-node 10 m—)> [10]
(3] (20] ‘ L

else if L is a 3-node
split L into two 2-nodes containing the items with the
smallest and largest of: k, L’s 1st key, L’s 2"dkey
the middle item is “sent up” and inserted in L’s parent

example: add 52

A= A

Search for 8:

Example 1: Insert 8
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Example 2: Insert 17

» Search for 17:

» Split the leaf node, and send up the middle of 14, 17, 20
and insert it the leaf node’s parent:

(28 o1
= (0] (&
3) (19) 29) 34) 50

Example 3: Insert 92

* In which node will we initially try to insert it?
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Example 3: Insert 92

» Search for 92:

» Split the leaf node, and send up the middle of 92, 93, 97
and insert it the leaf node’s parent:

* In this case, the leaf node’s parent is also a 3-node, so we
need to split is as well...

Example 3 (cont.)
+ We split the [77 90] node and we send up the middle of 77, 90, 93:

+ We try to insert it in the root node, but the root is also full!

* Then we split the root,
which increases the
tree’s height by 1, but ===
the tree is still balanced.

+ This is only case in which
the tree’s height increases.
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Efficiency of 2-3 Trees

A 2-3 tree containing n items has a height h <= log,n.

* Thus, search and insertion are both O(log n).
+ search visits at most h + 1 nodes
* insertion visits at most 2h + 1 nodes:
« starts by going down the full height
« in the worst case, performs splits all the way back up to the root

Deletion is tricky — you may need to coalesce nodes!
However, it also has a time complexity of O(log n).

» Thus, we can use 2-3 trees for a O(log n)-time data dictionary!

External Storage

* The balanced trees that we've covered don't work well if you
want to store the data dictionary externally —i.e., on disk.

+ Key facts about disks:

» data is transferred to and from disk in units called blocks,
which are typically 4 or 8 KB in size

+ disk accesses are slow!
« reading a block takes ~10 milliseconds (10-3 sec)
* vs. reading from memory, which takes ~10 nanoseconds
* in 10 ms, a modern CPU can perform millions of operations!
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B-Trees

A B-tree of order m is a tree in which each node has:
» at most 2m entries (and, for internal nodes, 2m + 1 children)
+ at least m entries (and, for internal nodes, m + 1 children)
+ exception: the root node may have as few as 1 entry
* a 2-3 tree is essentially a B-tree of order 1

To minimize the number of disk accesses, we make m
as large as possible.

» each disk read brings in more items

+ the tree will be shorter (each level has more nodes),
and thus searching for an item requires fewer disk reads

A large value of m doesn’t make sense for a memory-only tree,
because it leads to many key comparisons per node.

These comparisons are less expensive than accessing the disk,
so large values of m make sense for on-disk trees.

Example: a B-Tree of Order 2

20 40 68 90
/|

(3 10 14])(28 34)(51 6177 80 87)(93 97)

* m=2: atmost2m = 4 items per node (and at most 5 children)

atleast m = 2 items per node (and at least 3 children)
(except the root, which could have 1 item)

* The above tree holds the same keys this 2-3 tree:

We used the same order of insertion to create both trees:
51, 3,40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14
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Search in B-Trees

« Similar to search in a 2-3 tree.

* Example: search for 87

20 40 68 90
AR NS

(3 10 14])(28 34)(51 61)(77 80 87) 93 97)

Insertion in B-Trees

+ Similar to insertion in a 2-3 tree:
search for the key until you reach a leaf node

if a leaf node has fewer than 2m items, add the item
to the leaf node

else split the node, dividing up the 2m + 1 items:
the smallest m items remain in the original node
the largest m items go in a new node

send the middle entry up and insert it (and a pointer to
the new node) in the parent

» Example of an insertion without a split: insert 13

20 40 68 90 20 40 68 90
2N / 1.
(3 10 14](28 34)(51 61) (3 10 13 14)(28 34)(51 61)

CSCI E-22 Harvard Extension School 203



CSCI E-22

Splits in B-Trees

* Insert 5 into the result of the previous insertion:

m=2 {20 40 68 90 10{ 20 40 68 90
v e e EH) /|

(3540 13 1428 34(51 61] (3 5 )13 14)(28 34)(51 61

* The middle item (the 10) is sent up to the root.

The root has no room, so it is also split, and a new root is formed:

40
10( 20 % 68 90 | o (10 20/] [\68 90 |
(3 5](1314)(28 3/4][5|1 6] (35 )(1314)[28 :{4][5|1 61

» Splitting the root increases the tree’s height by 1, but the tree
is still balanced. This is only way that the tree’s height increases.

* When an internal node is split, its 2m + 2 pointers are split evenly
between the original node and the new node.

Analysis of B-Trees

20 40 68 90
/|

(3 10 14])(28 34)(51 6177 80 87)(93 97)

» All internal nodes have at least m children (actually, at least m+1).

* Thus, a B-tree with n items has a height <= log,,n, and
search and insertion are both O(log,,,n).

* As with 2-3 trees, deletion is tricky, but it’s still logarithmic.

Harvard Extension School

204



Search Trees: Conclusions

* Binary search trees can be O(logn), but they can degenerate
to O(n) running time if they are out of balance.

- 2-3 trees and B-trees are balanced search trees that
guarantee O(logn) performance.

* When data is stored on disk, the most important performance
consideration is reducing the number of disk accesses.

» B-trees offer improved performance for on-disk data dictionaries.
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Heaps and Priority Queues

Computer Science E-22
Harvard University

David G. Sullivan, Ph.D.

Priority Queue

A priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

* ("Ann Cudd", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

* use a higher priority for items that are "more important"

Example application: scheduling a shared resource like the CPU

» give some processes/applications a higher priority,
so that they will be scheduled first and/or more often

Key operations:

* insert: add an item (with a position based on its priority)
* remove: remove the item with the highest priority

One way to implement a PQ efficiently is using a type of
binary tree known as a heap.
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Complete Binary Trees

» A binary tree of height h is complete if:
* levels 0 through h - 1 are fully occupied
+ there are no “gaps” to the left of a node in level h

+ Complete:

Not complete (:_: = missing node):

Representing a Complete Binary Tree

» A complete binary tree has a simple array representation.

* The tree's nodes are stored in the array
in the order given by a level-order traversal.

* top to bottom, left to right

e@
®

Ge) @)
* Examples:

(26) [10] 8 [17]14] 3]
@ I@ :

(10
0@@ oG

[26[12]32] 4 [18]28] (1) (3)
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Navigating a Complete Binary Tree in Array Form

* Giventhe nodein al[i]:

. its left child is in a[2*i + 1] (o) (212)

* itsright childisin a[2*i + 2]

e itsparentisinal(i - 1)/2] @ @ @ @
(using integer division)
+ Examples: @ @

« the left child of the node in a[1] isina[2*1 + 1] = a[3]
the left child of the node in a[2] isin a[2*2 + 1] =a[5]
the right child of the node in a[3] isina[2*3 + 2] =a[8]

* The root node is in a[0]

the right child of the node in a[2] is in
the parent of the node in a[4] isina[(4-1)/2] =a[1]

the parent of the node in a[7] is in

What is the left child of 247

» Assume that the following array represents a complete tree:

0 1 2 3 4 5 6 7 8
|26 12[32]24 |18 2847 ]10] 9 |
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Heaps

» Heap: a complete binary tree in which each interior node
is greater than or equal to its children

* examples:

(28) (18 (12
(1) (20 ) @ @O @©
12) (&) (® O@

+ The largest value is always at the root of the tree.

* The smallest value can be in any leaf node - there’s no
guarantee about which one it will be.

* We're using max-at-top heaps.
* in a min-at-top heap, every interior node <= its children

Which of these is a heap?
- A ‘ea B. ‘ﬂ) C. ‘ﬂa
(18) (20 (8) @ (1) (19
(12)(1®) () @ 2 ©®

D. more than one (which ones?)

E. none of them
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How to Compare Objects

» We need to be able to compare items in the heap.

+ If those items are objects, we can't just do something like this:
if (iteml < item2)
Why not?

* Instead, we need to use a method to compare them.

An Interface for Objects That Can Be Compared

» The comparable interface is a built-in generic Java interface:

public interface Comparable<T> {
public int compareTo(T other);
» Itis used when defining a class of objects that can be ordered.

» Examples from the built-in Java classes:

pubTlic class String implements Comparable<String> {
pubTlic int compareTo(String other) {

}

public class Integer implements Comparable<Integer> {

public int compareTo(Integer other) {
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An Interface for Objects That Can Be Compared (cont.)

public interface Comparable<T> {
public int compareTo(T other);

e iteml.compareTo(item2) should return
* a negative integer if i teml "comes before" item?2
* a positive integer if iteml "comes after" item?2
* 0if iteml and item2 are equivalent in the ordering

* These conventions make it easy to construct appropriate
method calls:

numeric comparison comparison using compareTo

iteml < item2 iteml.compareTo(item2) < O
iteml > item2 iteml.compareTo(item2) > 0O
iteml == item2 iteml.compareTo(item2) ==

Heap Implementation

public class Heap<T extends Comparable<T>> {
private T[] contents;
private int numItems;

pubTlic Heap(int maxSize) {
contents = (T[])new Comparable[maxSize];
numItems = O;

@ contents —]

—— g Lyl by o]
numItems| 6
& @ e £ 3 3
@oe a Heap object

« Heap is another example of a generic collection class.
» as usual, T is the type of the elements

- extends Comparable<T> specifies T must implement
Comparable<T>

* must use Comparable (not Object) when creating the array
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Heap Implementation (cont.)

public class Heap<T extends Comparable<T>> {
private T[] contents;
private int numItems;

}
(28) contents| ————— ;[ [ [ T[]l
numItems 6
(16)  (20) ; 28] [16][20] [12] (8] [5 ]

a Heap object

(12 (&) (&)

» The picture above is a heap of integers:
Heap<Integer> myHeap = new Heap<Integer>(20);
» works because Integer implements Comparable<Integer>
» could also use string or Double

Removing the Largest Item from a Heap
* Remove and return the item in the root node.

* In addition, need to move the largest remaining item to the root,
while maintaining a complete tree with each node >= children

* Algorithm:
1. make a copy of the largest item
2. move the last item in the heap

until it is >= its children (or it'’s a leaf) @ e

4. return the largest item

to the root ‘@
3. “sift down” the new root item O

sitdon {5 ()
(20) @'9 (12) = (16) (12
(18) (&) (1) (8) ()
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Sifting Down an Item

» To sift down item x (i.e., the item whose key is x):
1. compare x with the larger of the item’s children, y
2. if x <y, swap x and y and repeat

. O_therexamples:
e 10: @‘ (18
(1) () = (1) (10
HEO®O GO®®®E
men (7
(26) ()
(15) (18) (10

siftbown() Method

private void siftbown(int i) { // assume i = 0
T toSift = contents[i];

int parent = 1i;
int child = 2 * parent + 1;
while (child < numItems) {
// If the right child is bigger, set child to be its index.
if (child < numItems - 1 &&
contents[child].compareTo(contents[child + 1]) < 0) {
child = child + 1;

if (tosift.compareTo(contents[child]) >= 0) {
break; // we’re done

// Move child up and move down one Tevel in the tree.
contents[parent] = contents[child];

parent = child; .
child = 2 * parent + 1; 0 toSift: 7
3 parent| child

contents[parent] = tosift; @ @ 0
* We don’t actually swap
items. We put the sifted item @ @ @

in place at the end.

0 1 2 3 4 5
[7126]23][15[18[10]
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remove () Method

public T remove() {

// check for empty heap goes here
T toRemove = contents[0];

contents[0] = contents[numItems - 1];
contents[numItems - 1] = null;
numItems--;

siftbown(0);

return toRemove;

(28 (8] (20
(00 (11 = () (2 = (1) (2
DJOIO 19 (&) 00,

0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 4
[28(20(12(16/8 | 5| |[5[20/12][16] 8 [nul] [20[16[12] 5] 8 |nu]]
numltems: 6 numltems: 5 numltems: 5

toRemove: 28 toRemove: 28 toRemove: 28

Inserting an Item in a Heap

+ Algorithm:
1. put the item in the next available slot (grow array if needed)
2. “sift up” the new item
until it is <= its parent (or it becomes the root item)
+ Example: insert 35
putitin
place:

sift it up: @ @\ @
(1) (1) = (16) (3 = (16) (20)

He@E OO OO®
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insert() Method
public void insert(T item) {
if (numItems == contents.length) {
// code to grow the array goes here..
}
contents[numItems] = 1item;
siftUp(numItems);
numItems++;
f%qufﬁybqliyb
|20|16|12| 5 | 8 | |20|16|12| 5 | 8 | 35] |35|16|20| 5 | 8 |12|
numltems: 5 numltems: 5 numltems: 6
item: 35 item: 35

Time Complexity of a Heap

(5)
(1) (&)
19 @) (D @)

* A heap containing n items has a height <= log,n. Why?

* Thus, removal and insertion are both O(log n).

* remove: go down at most log,n levels when sifting down;
do a constant number of operations per level

* insert: go up at most log,n levels when sifting up;
do a constant number of operations per level

» This means we can use a heap for a O(log n)-time priority queue.
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Using a Heap for a Priority Queue

» Recall: a priority queue (PQ) is a collection in which each item

has an associated number known as a priority.

* ("Ann Cudd", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

 use a higher priority for items that are "more important"

+ To implement a PQ using a heap:

» order the items in the heap according to their priorities
 every item in the heap will have a priority >= its children
+ the highest priority item will be in the root node

+ get the highest priority item by calling heap. remove()!

» For this to work, we need a "wrapper" class for items that

we put in the priority queue.
» will group together an item with its priority
» with a compareTo() method that compares priorities!

A Class for Items in a Priority Queue

public class PQItem implements Comparable<PQItem> {
// group an arbitrary object with a priority
private Object data;
private int priority;

public int compareTo(PQItem other) {
// error-checking goes here..
return (priority - other.priority);

* Example: PQItem item = new PQItem("Dave Sullivan",

Its compareTo() compares PQItems based on their priorities.

e iteml.compareTo(item2) returns:
* anegative integer if iteml has a lower priority than item2
* a positive integer if iteml has a higher priority than item2
+ 0 if they have the same priority

5);
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Using a Heap for a Priority Queue

null

pq: contents ——’l/ | | | \

numItems| 3

(15
OO

a Heap object

data| "Bob" | |"Dave" "Ann"
priority| 15 5 10

PQItem objects

Sample client code:
Heap<PQItem> pg = new Heap<PQItem>(50);
pg.insert(new PQItem("Dave", 5));
pg.insert(new PQItem("Ann", 10));
pg.insert(new PQItem("Bob", 15));

PQItem mostImportant = pq.remove(); // will get Bob!

Using a Heap to Sort an Array

* Recall selection sort: it repeatedly finds the smallest remaining
element and swaps it into place:

0 1 2 3 4 5 6
[5]16] 8 [14]20] 1 [26]

0 1 2 3 4 5 6
[ 7]16] 8 [14]20] 5 [ 26|
0 1 2 3 4 5 6
[71]5]8[14[20/16|26]|

* ltisn’t efficient, because it performs a linear scan to
find the smallest remaining element (O(n) steps per scan).

* Heapsort is a sorting algorithm that repeatedly finds the largest
remaining element and puts it in place.

+ It js efficient, because it turns the array into a heap.
* it can find/remove the largest remaining in O(logn) steps!
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Converting an Arbitrary Array to a Heap

* To convert an array (call it contents) with n items to a heap:
1. start with the parent of the last element:
contents[i],wherei = ((hn-1)-1)/2 = (nh-2)/2
2. sift down contents[i] and all elements to its left

e« Example: 0 1 2 3 4 5 6 e

[5[16] 8 [14[20] 1 |26]

. Last elements parent contents[(7 - 2)/2] —contents[Z]

980,

Converting an Array to a Heap (cont.)

* Next, sift down contents[1]:

(5) ()
(1) (20) = (0) (20
WWE W E

FlnaIIy sift down contents [0]

Sadndn
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Heapsort

+ Pseudocode:

heapsort(arr) {
// Turn the array into a max-at-top heap.
heap = new Heap(arr);

endunsorted = arr.length - 1;

while (endunsorted > 0) {
// Get the largest remaining element and put 7t
// at the end of the unsorted portion of the array.
TargestRemaining = heap.remove();
arr[endunsorted] = TargestRemaining;

endunsorted--;

Heapsort Example

, 0O 1 2 3 4 5 6
* Sort the following array: 1376 [45[10] 3 [22] 5 |

* Here’s the corresponding complete tree:

(13
(6) (49
DIOIO

+ Begin by converting it to a heap:
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Heapsort Example (cont.)

» Here’s the heap in both tree and array forms:
@ 0 1 2 3 4 5 6
(45[10]22] 6 [ 3 [13] 5 |
@ @ endUnsorted: 6

* We begin looping:

while (endunsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
TargestRemaining = heap.remove();
arr[endunsorted] = TargestRemaining;

endunsorted--;

remove()
copies 45; remove() heapSort() puts 45 in place;
moves 5 sifts down 5; decrements endUnsorted
to root returns 45

Heapsort Example (cont.)

* Here’s the heap in both tree and array forms:
@ 0 1 2 3 4 5 &
[45]10]22| 6 | 3 [13]| 5|
@ @ endUnsorted: 6

* Remove the largest item and put it in place:

0 1 2 3 4 5 6 0 1 2 3 4 5 6
toRemove: 45 [22[10[13] 6 [3 | 5]5| [22[10/13[6 |3 | 5 [45]

endUnsorted: 6 endUnsorted: 5
largestRemaining: 45
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Heapsort Example (cont.)

copy 22;
m%e 5 e sift down 5; i put 22t
to root return 22 ecremen

= (10) (13) =
0]O,

in place;
endUnsorted

0 1 2 3 4 5 6
toRemove: 22 |13/10] 5[ 6| 3| 5 |45]

0 1 2 3 4 5 6
|13]10] 5 [ 6 | 3 [22]45]

endUnsorted: 5
largestRemaining: 22

endUnsorted: 4

sift down 3;
return 13

=

put 13 in place;
decrement

=)

0 1 2 3 4 5 6
l10] 6 |5 3] 3 [22]45]

toRemove: 13

0 1 2 3 4 5 6
|10/ 6 | 5|3 [13]22]45]|

endUnsorted: 4
largestRemaining: 13

endUnsorted: 3

Heapsort Example (cont.)

copy 10;
move 3 sift down 3; put 10 in place;
to root return 10 decrement

0 1 2 3 4 5 6
toRemove: 10 el 3]5]3][13]22]45]|

0 1 2 3 4 5 6
[6]3]5[10/13[22[45]

endUnsorted: 3
largestRemaining: 10

endUnsorted: 2

copy 6,

move 5 sift down 5; put 6 in place;

to root return 6 decrement
=

0 1 2 3 4 5 6
toRemove: 6 I513]5[10[13]22]45]|

0 1 2 3 4 5 6
I513]6[10[13]22]45]|

endUnsorted: 2
largestRemaining: 6

endUnsorted: 1
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w5 @
move 3

to root

toRemove: 5

Heapsort Example (cont.)

sift down 3; @ put 5 in place; @

return 5 decrement

= =

0 1 2 3 4 5 6 0 1 2 3 4 5 6
[3]3]6[10[13[22[45] |3 [5]6[10[13][22]45]
endUnsorted: 1 endUnsorted: 0
largestRemaining: 5

* And now we terminate the loop:

while (endunsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
TargestRemaining = heap.remove();
arr[endunsorted] = TargestRemaining;

endunsorted--;

(18) (&)
19 @) (D) @)

« Time complexity of going from a heap to a sorted array?

* Thus, total time complexity = ?

It can be shown that turning an array into a heap takes O(n) steps.
» even better than O(n log n)!

* n/2 calls to siftbown(), most of which involve small subheaps

Efficiency of Heapsort
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How Does Heapsort Compare?

algorithm | best case | avg case |worst case extra
memory

selection sort Oo(n?) O(n?) O(n?) o

insertion sort Oo(n) O(n?) O(n?) o

Shell sort | O(n Togn) O(nt-5) O(nt-5) o

bubble sort on?) o(n?) o(n?) o
quicksort O(nlogn) | O(nlogn) o2 O(log n)
worst: O(n)

mergesort | O(nlogn) | O(n Togn) | O(nlogn) O()

heapsort | O(nTogn) | O(nlogn) | O(nlogn) o

Heapsort matches mergesort for the best worst-case time
complexity, but it has better space complexity.

Insertion sort is still best for arrays that are almost sorted.

» Quicksort is still typically fastest in the average case.
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Hash Tables

Computer Science E-22

Harvard University

David G. Sullivan, Ph.D.

Data Dictionary Revisited

We've considered several data structures that allow us to store
and search for data items using their key fields:

data structure

searching for an item

inserting an item

a linked list

using linear search

a list implemented using | O(log n) O(n)
an array using binary search
a list implemented using | O(n) O(n)

binary search tree

balanced search trees
(2-3 tree, B-tree, others)

+ We'll now look at hash tables, which can do better than O(logn).
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Ideal Case: Searching = Indexing

We would achieve optimal efficiency if we could treat
the key as an index into an array.

Example: storing data about members of a sports team
* key = jersey number (some value from 0-99).

« class for an individual player's record:
public class Player {
private int jerseyNum;
private String firstName;
3
» store the player records in an array:
Player[] teamRecords = new Player[100];

In such cases, search and insertion are O(1):

public Player search(int jerseyNum) {
return teamRecords[jerseyNum];
3

Hashing: Turning Keys into Array Indices

In most real-world problems, indexing is not as simple as
the sports-team example. Why?

To handle these problems, we perform hashing:
» use a hash function to convert the keys into array indices
"sullivan" > 18

* use techniques to handle cases in which multiple keys
are assigned the same hash value

The resulting data structure is known as a hash table.
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key value =)

hash
function

* examples:

Hash Functions

h("ant") = ASCII for 'a' — ASCII for 'a' = 0
h("cat") = ASCII for 'c' — ASCII for 'a’ = 2

* h(key) is known as the key's hash code.

» A hash function defines a mapping from keys to integers.
* We then use the modulus operator to get a valid array index.

%
=) integer = integerin [0, n—1]

(n = array length)

* Here's a very simple hash function for keys of lower-case letters:
h(key) = ASCII value of first char — ASCII value of 'a’

* A collision occurs when items with different keys are assigned
the same hash code.

* Two options:

1. each bucket is itself an array
* need to preallocate, and a bucket may become full

2. each bucket is a linked list
* items with the same hash code are "chained" together
» each "chain" can grow as needed

"ant"

"ape"

null

"cat"

0
1| null
2
3

null

null

Dealing with Collisions |: Separate Chaining

» Each position in the hash table serves as a bucket that can
store multiple data items.

CSCI E-22
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Dealing with Collisions Il: Open Addressing

* When the position assigned by the hash function is occupied,
find another open position.

» Example: "wasp" has a hash code of 22,
but it ends up in position 23 because
position 22 is occupied.

"ant"

"cat"

» We'll consider three ways of finding an
open position — a process known as probing.

"emu"

* We also perform probing when searching.
» example: search for "wasp"

* look in position 22

« then look in position 23 22| "wolf"

+ need to figure out when to safely stop 23] "wasp”

N o v AW N B O

searching (more on this soon!) 241 "yak®
25| "zebra"
Linear Probing
* Probe sequence: h(key), h(key) + 1, h(key) + 2, ...,
wrapping around as necessary.
+ Examples:
+ "ape" (h = 0) would be placed in position 1, o] "ant"
because position 0 is already full. 1| "ape”
e "bear" (h=1):try1,1+1,1+2—-open! 2 "eatr”
* where would "zebu" end up? 3 "bear"
4| "emu"
* Advantage: if there is an open cell, Z
linear probing will eventually find it. ;
+ Disadvantage: get "clusters" of occupied cells L
that lead to longer subsequent probes. ;‘; “wolf™
was
» probe length = the number of positions 24 ..yakp.,
considered during a probe 25 ["zebra”
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Quadratic Probing
» Probe sequence: h(key), h(key) + 12, h(key) + 22, h(key) + 32, ...,
wrapping around as necessary.
+ Examples:
« "ape"(h=0):try 0,0+ 1 —open! ol "ant"
« "pear" (h=1):try1,1+1,1+4—open! 1| "ape"
+ "zebu"? 2| "cat"
3
» Advantage: smaller clusters of occupied cells 4| "emu”
. . . L 5] "bear"
» Disadvantage: may fail to find an existing 6
open position. For example: 7
table size = 10
x = occupied 0 S| x |25 e
) . 1 181 6| x |16 36 22| "wolf"
trying to insert a - -
key with h(key) =0 2 7 23| "wasp
offsets of the probe 3 8 24 yak
sequence in italics 4l x |464 9| x |9 49 25| "zebra"
Double Hashing
* Use two hash functions:
* h1 computes the hash code
* h2 computes the increment for probing
» probe sequence: h1, h1+ h2, h1+2*h2, ... oo
« Examples: 1| "bear”
. 2| "cat"
* h1=our previous h 3 aner
* h2 = number of characters in the string . “ape"
. "ape" (h1=0,h2=23):try 0, 0 + 3 — open! . e
* "bear" (h1 =1, h2 =4): try 1 — open!
n n 6
+ "zebu"?
7
» Combines good features of linear and quadratic: I . '1'f"
* reduces clustering ..WO "
I e , 23] "wasp
+ will find an open position if there is one, 24 [ yak”
provided the table size is a prime number 25 ["zebra”
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Removing Items Under Open Addressing

* Problematic example (using linear probing): "ant"

+ insert "ape" (h =0): try 0, 0 + 1 — open!

* remove "ape"

"pear"

+ search for "ape": try 0, 0 + 1 — conclude not in table "emu"

0
1
* insert"bear" (h=1):try 1,1 +1,1+ 2 — open! > "cat”
3
4
5

» search for "bear": try 1 — conclude not in table,

but "bear" is further down in the table!

22| "wolf"

» To fix this problem, distinguish between:

23| "wasp"

* removed positions that previously held an item 4 [ g

* empty positions that have never held an item 25| "zebra"

» During probing, we don't stop if we see a removed position.
ex: search for "bear": try 1 (removed), 1 + 1, 1 + 2 — found!

* We can insert items in either empty or removed positions.

An Interface For Hash Tables

public interface HashTable {
boolean insert(Object key, Object value);
Queue<Object> search(object key);
Queue<Object> remove(Object key);

* insert() takes a key-value pair and returns:
* true if the key-value pair can be added
* false if it cannot be added (referred to as overflow)

* search() and remove() both take a key, and return a queue
containing all of the values associated with that key.
» example: an index for a book
» key = word
* values = the pages on which that word appears
* return null if the key is not found
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An Implementation Using Open Addressing

public class OpenHashTable implements HashTable {

private class Entry {
private Object key;

private LLQueue<Object> values;

}
private Entry[] table;

private int probeType; —1—»] "ant" |
’ Y LLQueue
0 object
table >

probeType | LINEAR 1 — | ——» "ape” |

2 null »lLLQueue

3 null object

4 null

* We use a private inner class for the entries in the hash table.

We use an LLQueue for the values associated with a given key.

Empty vs. Removed

* leave the Entry object in the table

When we remove a key and its values, we:

» set the Entry object's key and values fields to nu11

» example: after remove("ape"):

.I ”ant" I
" LLQueue

0 object

table » - -

probeType | LINEAR 1 — | null [ "ape

2] num null LLQueue

3] null object

4 null

L]

Note the difference:

 atruly empty position has a value of nu1T in the table
(example: positions 2, 3 and 4 above)

* aremoved position refers to an Entry object whose

key and values fields are nul1 (example: position 1 above)
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Probing Using Double Hashing

private int probe(Object key) {
int i = hl(key); // first hash function
int h2 = h2(key); // second hash function

// keep probing until we get an empty position or match
while (table[i] != null && 'key.equals(table[i].key)) {
i = (i + h2) % table.length;

}
return i;
}
* |tis essential that we:
+ check for table[i] != null first. why?

+ call the equals method on key, not table[i].key. why?

Avoiding an Infinite Loop

» The while loop in our probe method could lead to an infinite loop.

while (table[i] != null && 'key.equals(table[i].key)) {
i = (( + h2) % table.length;
3

* When would this happen?

» We can stop probing after checking n positions (n = table size),
because the probe sequence will just repeat after that point.
» for quadratic probing:

(h1+n?)%n = h1%n
(h1+(N+12)%n = (h1+n2+2n+1)%n=(h1+1)%n

+ for double hashing:
(h1+n*h2)%n = h1%n
(h1 + (n+1)h2) % n = (h1+n*h2 +h2) % n = (h1 +h2)%n
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Avoiding an Infinite Loop (cont.)

private int probe(Object key) {

int i = hl(key); // first hash function
int h2 = h2(key); // second hash function
int numChecked = 1;

// keep probing until we get an empty position or a match

while (table[i] !'= null && 'key.equals(table[i].key)) {

}

if (numChecked == table.length) {
return -1;

}
i = + h2) % table.length;
numChecked++;

return i;

Search and Removal

public LLQueue<Object> search(object key) {

}

// throw an exception if key == null

int i = probe(key);

if (i == -1 || table[i] == null) {
return null;

} else {

return table[i].values;

}

public LLQueue<Object> remove(Object key) {

// throw an exception if key == null
int i = probe(key);
if (i == -1 || table[i] == null) {

return null;

}

LLQueue<Object> removedvals = table[i].values;
table[i].key = null;

table[i].values = null;

return removedvals;
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Insertion
» We begin by probing for the key.

» Several cases:
1. the key is already in the table (we're inserting a duplicate)
-> add the value to the values in the key's Entry

2. the key is not in the table: three subcases:
a. encountered 1 or more removed positions while probing

- put the (key, value) pair in the first removed position
seen during probing. why?

b. no removed position; reached an empty position
- put the (key, value) pair in the empty position

c. no removed position or empty position
- overflow; return false

Tracing Through Some Examples
+ Start with the hash table at right with:

« double hashing (1) “ant”
» our earlier hash functions h1 and h2 —
2 cat
+ Perform the following operations: Z T
* insert "bear" (h1 =1, h2 = 4): s [ Fox"
* insert "bison" (h1 = 1, h2 = 5): 6
7
* insert "cow" (h1 =2, h2 = 3): 8
9
+ delete "emu" (h1 =4, h2 = 3): 10

» search "eel" (h1 =4, h2 = 3):

* insert "bee" (h1 = ,h2 = ):
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Dealing with Overflow

» Overflow = can't find a position for an item

* When does it occur?
* linear probing:
* quadratic probing:
* double hashing:

« if the table size is a prime number: same as linear
« if the table size is not a prime number: same as quadratic

» To avoid overflow (and reduce search times), grow the hash table
when the % of occupied positions gets too big.
+ problem: we need to rehash all of the existing items. why?

Implementing the Hash Function

» Characteristics of a good hash function:
1) efficient to compute
2) uses the entire key
« changing any char/digit/etc. should change the hash code
3) distributes the keys more or less uniformly across the table
4) must be a function!
» a key must always get the same hash code

* In Java, every object has a hashCode () method.

* the version inherited from Object returns a value
based on an object's memory location

» classes can override this version with their own
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Hash Functions for Strings: version 1

* h, = the sum of the characters' ASCI| values
+ example: hy("eat") =101 + 97 + 116 = 314

» All permutations of a given set of characters get the same code.
+ example: h,("tea") = h,("eat")
+ could be useful in a Scrabble game

« allow you to look up all words that can be formed
from a given set of characters

» The range of possible hash codes is very limited.
» example: hashing keys composed of 1-5 lower-case char's
(padded with spaces)
o 26%27*27*27*27 = over 13 million possible keys
» smallest code = h,("a ")=97 +4*32= 225}

largest code = h,("zzzzz") = 5*122 = 610 610 — 225

= 385 codes

Hash Functions for Strings: version 2

+ Compute a weighted sum of the ASCII values:
h,=a,b™"+a,b"2+ ... +a,_,b+a,,

where a; = ASCII value of the ith character
b = a constant
n = the number of characters

» Multiplying by powers of b allows the positions of the characters
to affect the hash code.

« different permutations get different codes

+ We may get arithmetic overflow, and thus the code
may be negative. We adjust it when this happens.

« Java uses this hash function with b = 31 in the hashCode ()
method of the string class.
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Hash Table Efficiency

In the best case, search and insertion are O(1).

In the worst case, search and insertion are linear.

* open addressing: O(m), where m = the size of the hash table
* separate chaining: O(n), where n = the number of keys

With good choices of hash function and table size,

complexity is generally better than O(log n) and approaches O(1).

load factor = # keys in table / size of the table.

To prevent performance degradation:
» open addressing: try to keep the load factor < 1/2
» separate chaining: try to keep the load factor < 1

Time-space tradeoff: bigger tables have better performance,
but they use up more memory.

Hash Table Limitations

It can be hard to come up with a good hash function for a
particular data set.

The items are not ordered by key. As a result, we can't easily:

+ print the contents in sorted order
» perform a range search (find all values between v1 and v2)
» perform a rank search — get the kth largest item

We can do all of these things with a search tree.
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Extra Practice

+ Start with the hash table at right with:
+ double hashing
* h1(key) = ASCII of first letter — ASCII of 'a’
* h2(key) = key.length()
» shaded cells are removed cells

* What is the probe sequence for "baboon"?
(the sequence of positions seen during probing)

1,2,5
1,6
1,7,2
1,7,3
1,7,2,8

moowp»

© 00 N OO L1 A W N R O

=
o

"ant"

"cat"

"amu"
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Extra Practice

+ Start with the hash table at right with:

"ant"

+ double hashing

* h1(key) = ASCII of first letter — ASCII of 'a’

"cat"

* h2(key) = key.length()

"amu"

» shaded cells are removed cells

* What is the probe sequence for "baboon"?

(hM1=1,h2=6) try: 1%11=1

(1+6)%11=7

© 00 N OO L1 A W N R O

(1+2°6) % 11=2

(1+3*6)% 11=8 10

1,2,5
1,6
1,7,2
1,7,3
1,7,2,8

empty cell, so stop probing

moowp»

Extra Practice

+ Start with the hash table at right with:

"ant"

* double hashing

* h1(key) = ASCII of first letter — ASCI| of 'a’

"cat"

* h2(key) = key.length()

« shaded cells are removed cells

"emu"

» What is the probe sequence for "baboon"?

(hM1=1,h2=6) try: 1% 11=1

(1+6)%11=7

O 00 N O i1 h W N R O

(1+2°6) % 11=2

=
o

(1+3*6) % 11=8

» If we insert "baboon", in what position will it go?
A1 B. 7 C. 2 D. 8
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Extra Practice

+ Start with the hash table at right with:
+ double hashing
* h1(key) = ASCII of first letter — ASCII of 'a’
* h2(key) = key.length()
» shaded cells are removed cells

+ What is the probe sequence for "baboon"?
(h1=1,h2=6) try: 1% 11=1
(1+6)%11=7
(1+2%6) % 11=2
(1+36)% 11=8

© 00 N OO L1 A W N R O

=
o

"ant"

"baboon"

"cat"

"amu"

+ If we insert "baboon", in what position will it go?

A 1 B. 7 C. 2 D. 8
the first removed position seen while probing
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Graphs

Computer Science E-22
Harvard Extension School

David G. Sullivan, Ph.D.

What is a Graph?

vertex / node

edge / arc
\

» A graph consists of:
 a set of vertices (also known as nodes)
* a set of edges (also known as arcs), each of which connects
a pair of vertices
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Example: A Highway Graph

185 Providence

» Vertices represent cities.
» Edges represent highways.

» This is a weighted graph, with a cost associated with each edge.
* in this example, the costs denote mileage

+ We’'ll use graph algorithms to answer questions like
“What is the shortest route from Portland to Providence?”

Relationships Among Vertices

» Two vertices are adjacent if they are connected by a single edge.
* ex: cand g are adjacent, but c and i are not

* The collection of vertices that are adjacent to a vertex v are
referred to as v’s neighbors.
* ex: Cc’s neighbors are a, b, d, f, and g

CSCI E-22 Harvard Extension School 241



Paths in a Graph

» A path is a sequence of edges that connects two vertices.

« A graph is connected if there is
a path between any two vertices.
+ ex: the six vertices at right are part

of a graph that is not connected

» A graph is complete if there is an
edge between every pair of vertices.

* ex: the graph at right is complete

Directed Graphs

» A directed graph has a direction associated with each edge,
which is depicted using an arrow:

» Edges in a directed graph are often represented as ordered
pairs of the form (start vertex, end vertex).

* ex: (a, b)is an edge in the graph above, but (b, a) is not.

* In a path in a directed graph, the end vertex of edge i
must be the same as the start vertex of edge i + 1.
« ex: {(a,b), (b, e), (e, f)}isavalid path.
{(a, b), (c, b), (c, a) } is not.
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Cycles in a Graph

* Acycle is a path that:

* leaves a given vertex using one edge
* returns to that same vertex using a different edge

Examples: the highlighted paths below

* An acyclic graph has no cycles.

Trees vs. Graphs

» Atree is a special type of graph.
» connected, undirected, and acyclic

» we usually single out one of the vertices to be the root,
but graph theory does not require this

a graph that is not a tree,
because it has cycles

another tree using the same nodes
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Spanning Trees

» A spanning tree is a subset of a connected graph that contains:
« all of the vertices
* asubset of the edges that form a tree

» Recall this graph with cycles
from the previous slide:

» The trees on that slide were spanning trees for this graph.
Here are two others:

Representing a Graph: Option 1

* Use an adjacency matrix — a two-dimensional array in which
element [r][c] = the cost of going from vertex r to vertex ¢

+ Example:
o 1 2 3
1 39 2. Portsmouth
2|54 |39 83
3| 44 83 0. Boston

* Use a special value to indicate there’s no edge fromrto c
» shown as a shaded cell above
+ can’t use 0, because an edge may have an actual cost of 0

» This representation:
» wastes memory if a graph is sparse (few edges per vertex)
* is memory-efficient if a graph is dense (many edges per vertex)
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Representing a Graph: Option 2

» Use one adjacency list for each vertex.
+ alinked list with info on the edges coming from that vertex

3 2
44 54
null
2 1. Portland
0 39 2. Portsmouth
T T
2| — 1 0 3
3 ) 39 54 83 0. Boston
null
1) 2
44 83
null

» This representation uses less memory if a graph is sparse.

+ It uses more memory if a graph is dense.
» because of the references linking the nodes

Graph Class

public class Graph {

private class Vertex {
private String id;
private Edge edges; // adjacency list
private vertex next;
private boolean encountered;
private boolean done;
private Vertex parent;
private double cost;

}

private class Edge {
private Vertex start;
private Vvertex end;
private double cost;
private Edge next;

¥ The highlighted fields
private Vertex vertices; are shown in the diagram
on the previous page.
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vertices

Our Graph Representation

“Boston”

44 54

null

“Portland”

v

Portland

39

83

Portsmouth

54

[ Worcester ]i[

Boston

)

“Portsmouth”

39 54

83
null

]
\ 1
“Worcester”

] |

44 83

null

null

Each Vertex object (shown in blue) stores info. about a vertex.
« including an adjacency list of Edge objects (the purple ones)

A Graph object has a single field called vertices
» areference to a linked list of Vertex objects
* alinked list of linked lists!

Traversing a Graph

Traversing a graph involves starting at some vertex and visiting
all vertices that can be reached from that vertex.

* visiting a vertex = processing its data in some way

+ if the graph is connected, all of its vertices will be visited

We will consider two types of traversals:

» depth-first: proceed as far as possible along a given path
before backing up

* breadth-first:

visit a vertex

visit all of its neighbors
visit all unvisited vertices 2 edges away
visit all unvisited vertices 3 edges away, etc.
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Depth-First Traversal

» Visit a vertex, then make recursive calls on all of its
yet-to-be-visited neighbors:

private static void dfTrav(vertex v, Vertex parent) {
System.out.printin(v.id); // visit v
v.done = true;
v.parent = parent; // record where we came from

// walk down v’s adjacency T1ist

Edge e = v.edges;

while (e !'= null) {
vertex w = e.end; // consider each neighbor w
if (lw.done) { // 7f w has not been visited

dftrav(w, v);

}
e

= e.next;

Example: Depth-First Traversal from Portland

For the examples, we'll
assume that the edges in
each vertex’s adjacency list
are sorted by increasing
edge cost.

dfTrav(Ptl, null)

w = Pts
dfTrav(Pts, Ptl)
w = Ptl, Bos
dfTrav(Bos, Pts)

void dfTrav(vertex v, Vertex parent) { w = wor
system.out.println(v.id); dfTrav(wor, Bos)
v.done = true; w = Pro
v.parent = parent; dfTrav(Pro, wor)
Edge e = v.edges; w = Wor, Bos, NY
while (e != null) { dfTrav(NY, Pro)
Vertex w = e.end; w = Pro
if (!'w.done) { return
dfTrav(w, v); no more neighbors
¥ _ . return
) e = e.next; W = Bos, Con
1 dfTrav(Con, wor)
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Depth-First Spanning Tree

The edges obtained by
following the parent
references form a spanning
tree with the origin of the
traversal as its root.

Portland
Portsmouth

Worcester
[ .
( Providence ] [ Concord ] [ Abany ] From any city, we can get to
the origin by following the
roads in the spanning tree.

Another Example:
Depth-First Traversal from Worcester

- In what order will the cities be visited?
*  Which edges will be in the resulting spanning tree?

Concord

54

)

((Albany ]&ﬂ Worcester

42 49

185 Providence
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Checking for Cycles in an Undirected Graph

» To discover a cycle in an undirected graph, we can:

» perform a depth-first traversal, marking the vertices as visited

« if a visited vertex has a neighbor that is (1) not its parent, and
(2) already marked as visited, there must be a cycle

If no cycles found during the traversal, the graph is acyclic.

» This doesn't work for directed graphs: ®

* cis a neighbor of both a and b ‘
* there is no cycle @ ©

Breadth-First Traversal

Use a queue to store vertices we've seen but not yet visited:

private static void bfTrav(vertex origin) {
origin.encountered = true;
origin.parent = null;
Queue<Vertex> q = new LLQueue<Vvertex>();
g.insert(origin);

while (!q.isEmpty()) {
Vertex v = q.remove();
System.out.printin(v.id); /) VIsit v.

// Add v’s unencountered neighbors to the queue.
Edge e = v.edges;
while (e !'= null) {
vertex w = e.end;
if (!w.encountered) {
w.encountered = true;
w.parent = v;
q.insert(w);

= e.next;
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Example: Breadth-First Traversal from Portland

54
[ Albany @]&[ Worcester oston C;
42 %
185 Providence (6)
[(New York (®)
Evolution of the queue:
remove insert queue contents
Portland Portland
Portland Portsmouth, Concord Portsmouth, Concord
Portsmouth Boston, Worcester Concord, Boston, Worcester
Concord none Boston, Worcester
Boston Providence Worcester, Providence
Worcester Albany Providence, Albany
Providence New York Albany, New York
Albany none New York
New York none empty

Concord Portsmouth @]

(Portiand (DI~ 39
63 O

breadth-first spanning tree:

Breadth-First Spanning Tree

1A Potand @z
@” — Portsmouth @)

134 @ﬁr

Boston

Worcester

185 Providence (6)

(New York  ®)

(_Portiand ]
[ Portsmouth ] [ Concord ]
[ Boston ][ Worcester ]
[ Providence ][ Albany ] Worcester

depth-first spanning tree:

[ Providence ] [ Concord

] (

Albany

)
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Another Example:
Breadth-First Traversal from Worcester

84 39
” Portsmouth
& 54

[ Albany ]&" Worcester ]Ii[ Boston ]

42 49
185 Providence
Evolution of the queue:
remove insert queue contents

Time Complexity of Graph Traversals

+ let V =number of vertices in the graph
E = number of edges

« If we use an adjacency matrix, a traversal requires O(V2) steps.
* why?

» If we use adjacency lists, a traversal requires O(V + E) steps.
+ visit each vertex once
 traverse each vertex's adjacency list at most once
« the total length of the adjacency lists is at most 2E = O(E)
- for a sparse graph, O(V + E) is better than O(V?)
- for a dense graph, E = O(V?), so both representations are O(V?)

* In the remaining notes, we'll assume an adjacency-list
implementation.

CSCI E-22 Harvard Extension School 251



Minimum Spanning Tree

* A minimum spanning tree (MST) has the smallest total cost
among all possible spanning trees.

* example:
Portland Portland 39
Portsmouth Portsmouth
83
54 54
Boston ] [ Worcester 44 Boston
one possible spanning tree the minimal-cost spanning tree
(total cost = 39 + 83 + 54 = 176) (total cost = 39 + 54 + 44 = 137)

« If all edges have unique costs, there is only one MST.
If some edges have the same cost, there may be more than one.

» Example applications:
» determining the shortest highway system for a set of cities

+ calculating the smallest length of cable needed to connect
a network of computers

Building a Minimum Spanning Tree

» Claim: If you divide the vertices into two disjoint subsets A and B,
the lowest-cost edge (v,, v,) joining a vertex in A to a vertex in B
must be part of the MST.

example:
subset A = unshaded
subset B = shaded

The 6 bold edges each join
a vertex in Ato a vertex in B.

Concord Portsmouth

[ Albany ]&[ Worcester

The one with the lowest cost
(Portland to Portsmouth)
must be in the MST.

Proof by contradiction:
1. Assume we can create an MST (call it T) that doesn’t include (v,, v,).
2. T mustinclude a path from v, to v,, so it must include

one of the other edges (v, v,') that span A and B,
such that (v,', v,') is part of the path from v, to v,. '
3. Adding (v,, v,) to T introduces a cycle.

4. Removing (v,', v,') gives a spanning tree with a
lower total cost, which contradicts the original assumption.
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Prim’s MST Algorithm

» Begin with the following subsets:
* A = any one of the vertices
+ B = all of the other vertices

* Repeatedly do the following:

+ select the lowest-cost edge (v,, V)
connecting a vertex in A to a vertex in B

* add (v,, v,) to the spanning tree
* move vertex v, from set B to set A

» Continue until set A contains all of the vertices.

Example: Prim’s Starting from Concord

Concord (Con)

(Albany (Alb) J—=2—Worcester(Wor)}—=24—{ Boston (Bos) )

42 49
185 Providence (Pro)
* Tracing the algorithm:
edge added| set A set B
{Con} {Alb, Bos, NY, Ptl, Pts, Pro, Wor}

(Con, Wor) |{Con, Wor} {Alb, Bos, NY, Ptl, Pts, Pro}
(Wor, Pro) [{Con, Wor, Pro} {Alb, Bos, NY, Ptl, Pts}
(Wor, Bos) |{Con, Wor, Pro, Bos} {Alb, NY, Pil, Pts}
(Bos, Pts) |{Con, Wor, Pro, Bos, Pts} {Alb, NY, Ptl}
(Pts, Ptl) {Con, Wor, Pro, Bos, Pts, Ptl} {Alb, NY}
(Wor, Alb)  [{Con, Wor, Pro, Bos, Pts, Ptl, Alb} |{NY}
(Pro, NY) {Con,Wor, Pro,Bos, Pts, Ptl, Alb, NY} {}
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MST May Not Give Shortest Paths

Concord (Con)

[ Albany (Alb) ]&[Worcester(Wor)]A[ Boston (Bos) ]

42 49

185 Providence (Pro)|

+ The MST is the spanning tree with the minimal total edge cost.

+ It does not necessarily include the minimal cost path
between a pair of vertices.

+ Example: shortest path from Boston to Providence
is along the single edge connecting them

+ that edge is not in the MST

Implementing Prim’s Algorithm

* We use the done field to keep track of the sets.
e ifv.done == true, visinsetA
e ifv.done == false, visinsetB

* We repeatedly scan through the lists of vertices and edges
to find the next edge to add.

> O(EV)

* We can do better!

* use a heap-based priority queue to store the vertices in set B
» priority of a vertex x = —1 * cost of the lowest-cost edge
connecting x to a vertex in set A
* why multiply by —17?

+ somewhat tricky: need to update the priorities over time
= O(E log V)
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The Shortest-Path Problem

+ It's often useful to know the shortest path from one vertex to
another —i.e., the one with the minimal total cost

» example application: routing traffic in the Internet

» For an unweighted graph, we can simply do the following:
« start a breadth-first traversal from the origin, v
» stop the traversal when you reach the other vertex, w

+ the path from v to w in the resulting (possibly partial)
spanning tree is a shortest path

» A breadth-first traversal works for an unweighted graph because:
+ the shortest path is simply one with the fewest edges

+ a breadth-first traversal visits cities in order according to the
number of edges they are from the origin.

+  Why might this approach fail to work for a weighted graph?

Dijkstra’s Algorithm

* One algorithm for solving the shortest-path problem for
weighted graphs was developed by E.W. Dijkstra.

+ It allows us to find the shortest path from a vertex v (the origin)
to all other vertices that can be reached from v.

+ Basic idea:

* maintain estimates of the shortest paths
from the origin to every vertex (along with their costs)

+ gradually refine these estimates as we traverse the graph

* |nitial estimates:

path cost C (inf)
the origin itself: stay put! 0 5 .
all other vertices: unknown infinity
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Dijkstra’s Algorithm (cont.)

+ We say that a vertex w is finalized if we have found the
shortest path from v to w.

* We repeatedly do the following:
+ find the unfinalized vertex w with the lowest cost estimate
* mark w as finalized (shown as a filled circle below)

* examine each unfinalized neighbor x of w to see if there
is a shorter path to x that passes through w

« if there is, update the shortest-path estimate for x

+ Example:

C (inf) C (5) C (5)

si i7 =) 5! :7 =) 5{ t7 (5+7<14)
A 14 B A 14 B A 14 B

©) (inf)  (0) (14) (0 (12)

Another Example: Shortest Paths from Providence

« |nitial estimates: Portsmouth

Boston infinity
Worcester infinity
Portsmouth infinity
Providence 0

Worcester

Providence

» Providence has the smallest unfinalized estimate, so we finalize it.

» We update our estimates for its neighbors:

Portsmouth

Boston 49 (< infinity)
Worcester 42 (< infinity)
Portsmouth infinity
Providence 0

Providence
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Shortest Paths from Providence (cont.)

Boston 49
Worcester 42
Portsmouth infinity
Providence 0

Portsmouth

Worcester

Boston

Providence

* Worcester has the smallest unfinalized estimate, so we finalize it.

+ any other route from Prov. to Worc. would need to go via Boston,
and since (Prov > Worc) < (Prov - Bos), we can’t do better.

* We update our estimates for Worcester's unfinalized neighbors:
Boston 49 (no change)
Worcester 42
Portsmouth 125 (42 + 83 < infinity)
Providence 0

Portsmouth

54

Worcester

Boston

Providence

Shortest Paths from Providence (cont.)

Boston 49
Worcester 42
Portsmouth 125
Providence 0

Portsmouth

Worcester

Providence

* Boston has the smallest unfinalized estimate, so we finalize it.
» we'll see later why we can safely do this!

* We update our estimates for Boston's unfinalized neighbors:

Boston 49

Worcester 42

Portsmouth 103 (49 + 54 < 125)
Providence 0

Portsmouth

Worcester

Providence
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Shortest Paths from Providence (cont.)

Portsmouth

Boston 49
Worcester 42
Portsmouth 103
Providence 0

Boston

Worcester

Providence

* Only Portsmouth is left, so we finalize it.

Finalizing a Vertex

@ origin

@ other finalized vertices

QO encountered but
unfinalized
(i.e.,ithas a
non-infinite estimate)

Let w be the unfinalized vertex with the smallest cost estimate.
Why can we finalize w, before seeing the rest of the graph?

We know that w’s current estimate is for the shortest path to w
that passes through only finalized vertices.

Any shorter path to w would have to pass through one of the
other encountered-but-unfinalized vertices, but they are all
further away from the origin than w is!
+ their cost estimates may decrease in subsequent stages,
but they can’t drop below w’s current estimate!
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Pseudocode for Dijkstra’s Algorithm

dijkstra(origin)
origin.cost=0
for each other vertex v
v.cost = infinity;

while there are still unfinalized vertices with cost < infinity
find the unfinalized vertex w with the minimal cost
mark w as finalized

for each unfinalized vertex x adjacent to w
cost_via_w = w.cost + edge_cost(w, x)
if (cost_via_w < x.cost)

x.cost = cost_via_w
X.parent = w

» At the conclusion of the algorithm, for each vertex v:
+ v.cost is the cost of the shortest path from the origin to v
« if v.cost is infinity, there is no path from the origin to v

« starting at v and following the parent references yields
the shortest path

Example: Shortest Paths from Concord

Portsmouth

Boston

& -

185 Providence

Evolution of the cost estimates (costs in bold have been finalized):

Albany inf | inf | 197 | 197 | 197 | 197 | 197
Boston inf | 74 74
Concord 0
New York inf | inf | inf | inf | inf | 290 | 290 | 290
Portland inf | 84 | 84 | 84
Portsmouth | inf | inf | 146 | 128 | 123 | 123
Providence | inf | inf | 105 | 105 | 105
Worcester | inf | 63

Note that the Portsmouth estimate was improved three times!
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Another Example: Shortest Paths from Worcester

84 Portland 39
g3 54

[ Albany ]L[ Worcester ]A[ Boston ]

42 49

185 Providence

Evolution of the cost estimates (costs in bold have been finalized):

Albany
Boston
Concord
New York
Portland
Portsmouth
Providence
Worcester

Implementing Dijkstra's Algorithm

+ Similar to the implementation of Prim's algorithm.

+ Use a heap-based priority queue to store the unfinalized vertices.
* priority = ?

* Need to update a vertex's priority whenever we update its
shortest-path estimate.

» Time complexity = O(ElogV)
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Topological Sort

Used to order the vertices in a directed acyclic graph (a DAG).

Topological order: an ordering of the vertices such that,
if there is directed edge from a to b, a comes before b.

Example application: ordering courses according to prerequisites
CSCI E-170
.

CSCI E-251
MATH E-104 CSCI E-124

+ adirected edge from a to b indicates that a is a prereq of b

CSCI E-160

CSCI E-220

[ cscie-s0a }—{ csclE-50p

CSCI E-119

MATH E-10

There may be more than one topological ordering.

Topological Sort Algorithm

A successor of a vertex v in a directed graph = a vertex w such
that (v, w) is an edge in the graph  (ve—>ew)

Basic idea: find vertices with no successors and work backward.
» there must be at least one such vertex. why?

Pseudocode for one possible approach:

topolSort
S = a stack to hold the vertices as they are visited
while there are still unvisited vertices
find a vertex v with no unvisited successors
mark v as visited
S.push(v)
return S

Popping the vertices off the resulting stack gives
one possible topological ordering.
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Topological Sort Example

CSCI E-162

CSCI E-160
CSCI E-215

( csciE-50a }—{ cscClIE-50b

CSCI E-119

MATH E-10 MATH E-104 CSCI E-124

Evolution of the stack:

push stack contents (top to bottom)

E-124 E-124

E-162 E-162, E-124

E-215 E-215, E-162, E-124

E-104 E-104, E-215, E-162, E-124

E-119 E-119, E-104, E-215, E-162, E-124

E-160 E-160, E-119, E-104, E-215, E-162, E-124

E-10 E-10, E-160, E-119, E-104, E-215, E-162, E-124

E-50b E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124

E-50a E-50a, E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124

one possible topological ordering

Another Topological Sort Example

Evolution of the stack:

push stack contents (top to bottom)
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Traveling Salesperson Problem (TSP)
155

95
62

Cambridge Oxford
203
Canterbury

55

» A salesperson needs to travel to a number of cities to visit clients,
and wants to do so as efficiently as possible.

* A touris a path that:
* begins at some starting vertex

» passes through every other vertex once and only once
 returns to the starting vertex

« TSP: find the tour with the lowest total cost

TSP for Santa Claus

A*world TSP” with
1,904,711 cities.

The figure at right
shows a tour with
a total cost of
7,516,353,779
meters — which is
at most 0.068%
longer than the
optimal tour.

source: http://www.tsp.gatech.edu/world/pictures.html

» Other applications:
* coin collection from phone booths
* routes for school buses or garbage trucks

* minimizing the movements of machines in automated
manufacturing processes

* many others
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Solving a TSP: Brute-Force Approach

» Perform an exhaustive search of all possible tours.
» represent the set of all possible tours as a tree

Cr g
e (o] [v] b (o 1] Eq [¢f [¥) o (o] [o]
oJeedlele)tentenloled v Jenen(cdedloJeroJer(c
le)tledo)ledle)ento)encdlen(cdermlo)cdloJer(eder
» The leaf nodes correspond to possible solutions.

« for n cities, there are (n — 1)! leaf nodes in the tree.
 half are redundant (e.g., L-Cm-Ct-O-Y-L = L-Y-O-Ct-Cm-L)

* Problem: exhaustive search is intractable for all but small n.
+ example: whenn =14, ((n— 1))/ 2 = over 3 billion

Solving a TSP: Informed Search

* Focus on the most promising paths through the tree
of possible tours.

 use a function that estimates how good a given path is

» Better than brute force, but still exponential space and time.
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Algorithm Analysis Revisited

Recall that we can group algorithms into classes (n = problem size):

name example expressions big-O notation
constant time 1,7,10 o)
logarithmic time 3Togygn, log,n +5 O(logn)
linear time 5n, 10n - 2Tog,n O(n)

n log n time 4n Tog,n, nlog,n+n O(nlogn)
quadratic time 2n’+3n,n2-1 0(n3)
n°(e>2) ! n’-sn,2n°+5n2 o) _______
exponential time 2", 5e" + 2n? o(cm

factorial time (n-1)!/2, 3n! o(n!)

Algorithms that fall into one of the classes above the dotted line
are referred to as polynomial-time algorithms.

The term exponential-time algorithm is sometimes used
to include all algorithms that fall below the dotted line.

+ algorithms whose running time grows as fast or faster than c"

Classifying Problems

Problems that can be solved using a polynomial-time algorithm
are considered “easy” problems.

* we can solve large problem instances in a
reasonable amount of time

Problems that don’t have a polynomial-time solution algorithm
are considered “hard” or "intractable" problems.

+ they can only be solved exactly for small values of n

Increasing the CPU speed doesn't help much for
intractable problems:

CPU 2
CPU1 (1000x faster)
max problem size for O(n) alg: N 1000N
O(n?) alg: N 316N
O(2M) alg: N N +9.97
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Dealing With Intractable Problems

» When faced with an intractable problem, we resort to
techniques that quickly find solutions that are "good enough".

» Such techniques are often referred to as heuristic techniques.
* heuristic = rule of thumb
+ there's no guarantee these techniques will produce
the optimal solution, but they typically work well

Take-Home Lessons

» Object-oriented programming allows us to capture the
abstractions in the programs that we write.

» creates reusable building blocks
* key concepts: encapsulation, inheritance, polymorphism

» Abstract data types allow us to organize and manipulate
collections of data.

» agiven ADT can be implemented in different ways
« fundamental building blocks: arrays, linked nodes

+ Efficiency matters when dealing with large collections of data.
» some solutions can be much faster or more space efficient
* what’s the best data structure/algorithm for your workload?

» example: sorting an almost sorted collection
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Take-Home Lessons (cont.)

» Use the tools in your toolbox!
+ interfaces, generic data structures
* lists/stacks/queues, trees, heaps, hash tables
* recursion, recursive backtracking, divide-and-conquer

» Use built-in/provided collections/interfaces:
e java.util.ArrayList<T> (implements List<T>)
e java.util.LinkedList<T> (implements List<T> and Queue<T>)
e java.util.Stack<T>
e java.util.TreeMap<K, V> (a balanced search tree)
e java.util.HashMap<K, V> (a hash table) }
e java.util.PriorityQueue<T> (a heap)

implement
Map<K, V>

» But use them intelligently!
* ex: LinkedList maintains a reference to the last node in the list
o list.add(item, n) will add item to the end in O(n) time
o Tlist.addLast(item) will add item to the end in O(1) time!
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