Section 10

CSCI E-22

Will Begin Shortly

Heaps

Recall:

e Heap: a complete binary tree in which each interior node is greater than or
equal to its children

e The maximum value is in the root node

e The minimum value can be in any one of the leaf nodes

e Often used to implement a priority queue

o Can efficiently retrieve the highest priority value (root of max-at-top heap)

e Since a heap is a complete tree, we can use an array as a compact

representation

o For a parent node at index i, the left child stored in index 2*i + 1
and right child is stored in index 2*i + 2

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root.

0

1

2 3

4

5

7

11

5 | 39

16

20

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root.

Step 1: represent as
complete tree

0

1

2 3

4

5

7

11

5 | 39

16

20

®

Use the child formulas to figure out
what the parent-child edges are

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 4, 4 1 : 3 4 5

Step 1: represent as 7 11 5 39 | 16 | 20

complete tree

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. ., ~_ 0%

Step 1: represent as 7 | 11| 5 39|16 | 20

complete tree

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

2%+ 1
t
element as the root. 0 P A I

Step 1: represent as 7 11 5 39 | 16 | 20

complete tree

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root.

0 1 2 3 4 5
Step 1: represent as 7 11 5 39 16 | 20
complete tree
— v v
depth 0 depth 1 depth 2

Can also fill in the complete tree
from top-to-bottom, left-to-right as
you read the array

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0 1 9 3 a4 5

Step 1: represent as 7 11 5 39 | 16 | 20

complete tree

(Remember that in a complete tree
there can be gaps in the last level,

@ @ @ as long as they are on the right)

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root.

N

0 1 2 3 5

Step 1: represent as 7 | 11| 5 39|16 | 20

complete tree
Step 2: heapify the tree
e Recursively sift down all
interior nodes, starting with the

m e parent of the /ast leaf node

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0 1 9 3 a4 5

Step 1: represent as 7 11 5 139 | 16 | 20
complete tree
Step 2: heapify the tree

Recursively sift down all
interior nodes, starting with the
parent of the /ast leaf node

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0]) 3 4 5

Step 1: represent as 7 11 | 20 | 39 | 16 5

complete tree
Step 2: heapify the tree
a Recursively sift down all
interior nodes, starting with the

m @ parent of the /ast leaf node
@ @ e Can't sift 5 down any further

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0 1 9 3 a4 5

Step 1: represent as 7 1 1201 39 | 16 | 5
complete tree
Step 2: heapify the tree

Recursively sift down all
interior nodes, starting with the

If both children are parent of the /ast leaf node

greater than the parent,
choose the greatest

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0]) 3 4 5

Step 1: represent as 7 39 | 20 | 11 16 5

complete tree
Step 2: heapify the tree
a Recursively sift down all
interior nodes, starting with the

@ @ parent of the /ast leaf node
Can't sift 11 down any further 0 @ e

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root.

0 1 2 3 4 5
Step 1: represent as 7 139120/ 11| 16 | 5
complete tree
Step 2: heapify the tree
Once done sifting all of the nodes ° Recgrsively sift dovx_/n all .
in a given level, move up a level interior nodes, starting with the
@ parent of the /ast leaf node

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0]) 3 4 5

Step 1: represent as 7 39 | 20 11 16 5
complete tree
Step 2: heapify the tree

Recursively sift down all
interior nodes, starting with the
parent of the /ast leaf node

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0 1 9 3 a4 5

Step 1: represent as 39 7 20 | 11 | 16 5

complete tree
Step 2: heapify the tree
@ Recursively sift down all
interior nodes, starting with the

Recursively continue sifting 7 down a @ parent of the /ast leaf node

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0]) 3 4 5

Step 1: represent as 39 7 20 11 16 5
complete tree
Step 2: heapify the tree

Recursively sift down all
interior nodes, starting with the
parent of the /ast leaf node

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root. 0 1 9 3 a4 5
Step 1: represent as 39 |16 | 20 | 11 7 5
complete tree

Step 2: heapify the tree

@ Recursively sift down all

interior nodes, starting with the

@ @ parent of the /ast leaf node
Can't sift 7 down any further m a e

Heaps

We will now convert the following 6-element array into a valid max-heap. We start
by taking our array and representing it as a heap in the usual manner, with the first

element as the root.

N

0 1 2 3 5

~

5

Step 1: represent as 39 16 | 20 11
complete tree
Step 2: heapify the tree

Heaps

How long does it take to create a heap from an array?

Heaps
How long does it take to create a heap from an array?
Each sift operation takes O(log n) time to sift items through the height of the heap.

There are O(n) overall sift operations.

It takes O(n log n) time to create a heap from an array.

Heapsort

We will now run through an example of heapsort. Suppose we have the following
numbers in an array: 1 9 3 4 5 &

5|3 12, 8 | 7| 4 6

We want to sort the array in ascending order. If we interpret the array as a
complete tree, it looks like this: o

Heapsort

What's the first step of heapsort?

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Should we create a min-heap or a max-heap?

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Should we create a min-heap or a max-heap? We create a max-heap since we
will be removing the largest element each time and filling the array right to left.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What's the first step of heapsort? Turn the array into a heap.

Heapsort

What is the next step?

Heapsort

What is the next step? Successively remove the largest element, reheapify, and
place the largest element in the correct location in the array.

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

’12|8|6|3‘7|4‘5

heap

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

’12|8|6|3‘7|4‘5

heap

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(slefefa7[e]s]

heap

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(slefefar[a]s]

heap

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(slefefa7[e]s]

heap

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

[elsfefar[a]s]

heap

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

[elsfefa7[e]s]

heap

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

[el7fefa]s[a]s]

heap

Heapsort

Algorithm:

Repeat:

Remove largest element
Re-heapify

Place removed element
into place in array

EAIENERRNE

——

heap sorted
portion of

array

Heapsort

Algorithm:

Repeat:

Remove largest element
Re-heapify

Place removed element
into place in array

BRI

portion of
array

Heapsort

Algorithm:

Repeat:

Remove largest element
Re-heapify

Place removed element
into place in array

[el7]efa]s]]e]

heap

——
sorted
portion of
array

Heapsort

Algorithm:

Repeat:

Remove largest element
Re-heapify

Place removed element
into place in array

(4l7]efa]s]e]e]

heap

——
sorted
portion of
array

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(4l fefafs]4]n]

——

heap sorted
portion of

array

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(7 [4fe[a[s[4]e]

——

heap sorted
portion of

array

Heapsort

Algorithm:

Repeat:

Remove largest element
Re-heapify

Place removed element
into place in array

EIEIEERENE

——

heap sorted
portion of

array

Heapsort

Algorithm:

Repeat:

Remove largest element
Re-heapify

Place removed element
into place in array

ZielclElcle Pl

portion of
array

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(4lsfefafe]s]e]
—_—
heap sorted
portion of
array

®

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

clelelslclewl

heap sorted
portion of
array

Heapsort (6 [5]a]3]a]s]12]

heap sorted
portion of
array

®

Algorithm: e
Repeat:
e Remove largest element

e Re-heapify
e Place removed element

into place in array e

Heapsort (65 [4]s][7]8]12]
heap sorted
portion of
array

Algorithm: e
Repeat:
e Remove largest element e o

e Re-heapify
e Place removed element

into place in array o

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(alsfafa]7]e]e]

heap sorted
portion of
array

a ©
OO

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

[alsfafa]7r]e]e]

heap sorted
portion of
array

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

[slafefa]7]e]e]

heap sorted
portion of
array

H ©
OO

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

HEIRIEIEDI

heap sorted
portion of
array

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

[elafafe]7]e]e]

heap sorted
portion of
array

®
(&

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

[4lefafe]7]e]e]

heap sorted
portion of
array

®
(&

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

4lafsfe]7]s]me]
—
heap sorted
portion of
array

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

HEIEEIED

N
heap sorted
portion of
array

®

®

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

3]alsfef7]s]e]
—
heap sorted
portion of
array

®

®

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

HEIEEI D

——
heap sorted
portion of
array

®

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(2lefs[e7]e]e]

sorted
portion of
array

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(2lefs[e]7]e]e]

sorted
portion of
array

What is the runtime of Heapsort?

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(2lefs[e7]e]e]

sorted
portion of
array

What is the runtime of Heapsort?

O(n * log(n)) for heapifying the initial array

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(2lefs[e]7]e]e]

sorted
portion of
array

What is the runtime of Heapsort?

O(n * log(n)) for heapifying the initial array
+
O(n * log(n)) for n successive sift operations

Heapsort

Algorithm:

Repeat:
e Remove largest element
e Re-heapify
e Place removed element
into place in array

(2lefs[e7]e]e]

sorted
portion of
array

What is the runtime of Heapsort?

O(n * log(n)) for heapifying the initial array
+
O(n * log(n)) for n successive sift operations

O(n * log(n)) overall

Hashing

Suppose we have a 7-element hash table, and we wish to insert following words:

apple, cat, anvil, boy, bag, dog, cup, down

We'll use the following hash function:

h(key): index related to first letter of the key (a=0,b =1, ...)

Let’s insert these keys into an initially empty hash table using linear probing and
count the total length of the probes. Then, do the same exercise, but use quadratic

probing.

Hashing

Suppose we have a 7-element hash table, and we wish to insert following words:
apple, cat, anvil, boy, bag, dog, cup, down
We'll use the following hash function:
h(key): index related to first letter of the key (a=0,b =1, ...)

Let’s insert these keys into an initially empty hash table using linear probing and
count the total length of the probes. Then, do the same exercise, but use quadratic
probing.

Linear probe sequence: h(x), h(x) + 1, h(x) + 2, h(x) + 3, ..., h(x) + n-1
Quadratic probe sequence: h(x), h(x) + 12, h(x) + 22, h(x) + 32, ..., h(x) + (n-1)?

Hashing

Suppose we have a 7-element hash table, and we wish to insert following words:
apple, cat, anvil, boy, bag, dog, cup, down
We'll use the following hash function:
h(key): index related to first letter of the key (a=0,b =1, ...)

Let’s insert these keys into an initially empty hash table using linear probing and
count the total length of the probes. Then, do the same exercise, but use quadratic

probing. Wrap around as necessary
with mod!

Linear probe sequence: h(x), h(x) + 1, h(x) + 2, h(x) + 3, ..., h(x) + n-1
Quadratic probe sequence: h(x), h(x) + 12, h(x) + 22, h(x) + 32, ..., h(x) + (n-1)?

Linear probing

apple, cat, anvil, boy, bag, dog, cup, down

Linear probing

0 | apple

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0

Linear probing

0 | apple

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0

h(cat) =2

Linear probing

0 | apple

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) = 2
h(anvil) =0

Linear probing

0 | apple

1 | anvil

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2

h(anvil)

=0
h(anvil) + 1 =

1

Linear probing

0 | apple

1 | anvil

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) = 2

h(anvil) =0
h(anvil) + 1 =1

h(boy) = 1

Linear probing

0 | apple

1 | anvil

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2

h(anvil)

=0
h(anvil) + 1 =

1

h(boy) = 1
h(boy) +1=2

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) = 2

h(anvil) =0
h(anvil) + 1 =1

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2

h(anvil)

=0
h(anvil) + 1 =

1
h(boy) = 1

h(boy) +1=2
h(boy) +2=3

h(bag) = 1

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

4 | bag

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) = 2

h(anvil) =0
h(anvil) + 1 =1

H.(.bag) =4

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

4 | bag

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0 h(dog) =3
h(cat) =2

h(anvil)

=0
h(anvil) + 1 =

1
h(boy) = 1
h(boy) +1=2
h(boy) +2=3
h(bag) =1

H(.bag) =4

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

4 | bag

5 | dog

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0 h(dog) = 3
h(cat) = 2 H(.dog) =5

h(anvil) =0
h(anvil) + 1 =1

H.(.bag) =4

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

4 | bag

5 | dog

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0 h(dog) =3
h(cat) = 2 h(dog) = 5

h(anvil)

=0 h(cup) =2
h(anvil) + 1 =

1
h(boy) = 1
h(boy) +1=2
h(boy) +2=3
h(bag) =1

H(.bag) =4

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

4 | bag

5 | dog

6 | cup

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0 h(dog) = 3
h(cat) = 2 H(.dog) +2=5
h(anvil) =0 h(cup) =2

h(anvil) + 1 =1
h(cup) +4 =6

h(bag) +3=4

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

4 | bag

5 | dog

6 | cup

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0 h(dog) =3
h(cat) = 2 h(dog) + 2 = 5
h(anvil) =0 h(cup) =2
h(anvil) + 1 =1

h(cup) +4 =6
h(boy) = 1
h(boy) +1 =2 h(down) =3
h(boy) +2=3
h(bag) =1
H(.bag) +3=4

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

4 | bag

5 | dog

6 | cup

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0 h(dog) = 3
h(cat) = 2 H(.dog) +2=5
h(anvil) =0 h(cup) =2
h(anvil) + 1 =1
h(cup) +4 =6
h(boy) =1
h(boy) +1 =2 h(down) =3
h(boy)+2=3
h(down)+6=9%7=2
h(bag) =
h(bag) +3=4

Linear probing

0 | apple

1 | anvil

2 | cat

3 | boy

4 | bag

5 | dog

6 | cup

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2

h(anvil)

=0
h(anvil) + 1 =

1
h(boy) = 1
h(boy) +1=2
h(boy) +2=3
h(bag) =1

H(.bag) +3=4

h(dog) =3
h(dog) + 2 = 5
h(cup) =2
H.(.cup) +4=6
h(down) =3

h(down)+6=9%7=2

Linear probing total probe length: 26

Quadratic probing

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

0 | apple

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0

Quadratic probing

0 | apple

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0

h(cat) = 2

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

h(apple) =0
o £ h(cat) = 2
! h(anvil) =0
2| cat
3
4
5
6

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

h(apple) =0
el h(cat) = 2
1| anvil h(anvil) = 0
2| cat h(anvil) + 12 =1
3
4
5
6

Quadratic probing

0 | apple

1 | anvil

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2
h(anvil) =0

h(anvil) + 12 = 1

h(boy) = 1

Quadratic probing

0 | apple

1 | anvil

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) = 2
h(anvil) =0

h(anvil) + 12 =1

h(boy) = 1
h(boy) + 12 = 2

Quadratic probing

0 | apple

1 | anvil

2 | cat

5 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2
h(anvil) =0

h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12=2
h(boy) + 22=5

Quadratic probing

0 | apple

1 | anvil

2 | cat

5 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) = 2
h(anvil) =0

h(anvil) + 12 =1
h(boy) = 1

h(boy) + 12 = 2
h(boy) + 22=5

h(bag) = 1

Quadratic probing

0 | apple

1 | anvil

2 | cat

5 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2
h(anvil) =0

h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12=2
h(boy) + 22=5

h(bag) = 1
h(bag) + 12 = 2

Quadratic probing

0 | apple

1 | anvil

2 | cat

5 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) = 2
h(anvil) =0

h(anvil) + 12 =1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22=5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22=5

Quadratic probing

0 | apple

1 | anvil

2 | cat

3 | bag

5 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2
h(anvil) =0

h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12=2
h(boy) + 22=5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 =5
h(bag) + 32=10 % 7 = 3

Quadratic probing

0 | apple

1 | anvil

2 | cat

3 | bag

5 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0 h(dog) = 3
h(cat) = 2
h(anvil) =0

h(anvil) + 12 =1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22=5

h(bag) = 1

h(bag) + 12 = 2

h(bag) + 22=5

h(bag) +32=10%7 =3

Quadratic probing

0 | apple

1 | anvil

2 | cat

3 | bag

4 | dog

5 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) =2
h(anvil) =0

h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12=2
h(boy) + 22=5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 =5
h(bag) + 32=10 % 7 = 3

h(dog) =3
h(dog) + 12 =4

Quadratic probing

0 | apple

1 | anvil

2 | cat

3 | bag

4 | dog

5 | boy

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) =0
h(cat) = 2
h(anvil) =0

h(anvil) + 12 =1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22=5

h(bag) = 1

h(bag) + 12 = 2

h(bag) + 22=5

h(bag) +32=10%7 =3

h(dog) = 3
h(dog) + 12 =4

h(cup) =2

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

h(apple) =0 h(dog) =3
0 h(dog) + 12 =4
apple h(cat) = 2
. h(cup) =2
1 |
anvi h(anvil) = 0 h(cup) + 12 = 3
2 | cat h(anvil) + 12 = 1
h(boy) = 1
3
i h(boy) + 12 = 2
2 —
4| dog h(boy) + 22= 5
h(bag) = 1
5
boy h(bag) + 12 =2
6 h(bag) + 22 =5
h(bag) + 32=10%7 =3

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

h(apple) =0 h(dog) = 3
0 | h(dog) + 12 = 4
appie h(cat) = 2
; h(cup) =2
1 |
anvi h(anvil) = 0 h(cup) + 12=3
2| cat h(anvil) + 12 =1 h(cup) +22=6
h(boy) = 1
3
bag h(boy) + 12 = 2
4 | dog h(boy) + 22=5
h(bag) = 1
5
boy h(bag) + 12 = 2
h(bag) + 22=5
6
cup h(bag) + 32=10%7 =3

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

h(apple) =0 h(dog) =3
0 h(dog) + 12 =4
apple h(cat) = 2
. h(cup) =2
1 |
anvi h(anvil) = 0 h(cup) + 12 = 3
2| cat h(anvil) + 12 = 1 h(cup) + 22 =6
h(boy) = 1 h(down) =3
3
i h(boy) + 12 = 2
2 —
4| dog h(boy) + 22= 5
h(bag) = 1
5
boy h(bag) + 12 =2
h(bag) + 22 =5
6
cup h(bag) + 32=10%7 =3

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

h(apple) =0 h(dog) = 3
0 | anol h(dog) + 12 = 4
apple h(cat) = 2
: h(cup) =2
1
anvil h(anvil) = 0 h(cup) + 12 = 3
2| cat h(anvil) + 12 =1 h(cup) +22=6
h(boy) = 1 h(down) =3
3
bag h(boy) + 12 = 2
4 | dog h(boy) + 22=5 h(down) +62=39% 7 =4
h(bag) = 1
5
ooy h(bag) + 12 = 2
h(bag) + 22=5
6
cup h(bag) + 32=10%7 =3

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

h(apple) =0
0
apple h(cat) = 2
) .
anvil h(anvil) = 0
2 | cat h(anvil) + 12 = 1
h(boy) = 1
3
bag h(boy) + 12 = 2
2 —
4 | dog h(boy) + 22= 5
h(bag) = 1
5
boy h(bag) + 12 =2
h(bag) + 22 =5
6| cup h(bag) + 32=10%7 =3

h(dog) =3
h(dog) + 12 =4

h(cup) =2
h(cup) + 12=3
h(cup) +22=6
h(down) =3

h(down) + 62 =39 % 7 = 4

Quadratic probing total probe length: 23

The probe() method in our HashTable class

The return value of the probe () method is an integer.

e If the key is in the table, the probe() method
returns the index it is stored in

e If the key is not in the table, the probe () method
returns the index of the first empty or removed
cell encountered during the search for the key

The hash table to the right has been partially filled
using linear probing and the hash function from the
previous problem. A gray cell indicates that an item has
been removed.

0 | aardvark

2 | cat

3 | bear

5 | dog

The probe() method in our HashTable class

The return value of the probe () method is an integer.

e If the key is in the table, the probe() method
returns the index it is stored in

e If the key is not in the table, the probe() method
returns the index of the first empty or removed
cell encountered during the search for the key

The hash table to the right has been partially filled
using linear probing and the hash function from the
previous problem. A gray cell indicates that an item has
been removed.

One of the items in the table
has been inserted incorrectly.
Which one?

0 | aardvark

2 | cat

3 | bear

5 | dog

The probe() method in our HashTable class

The return value of the probe () method is an integer.

e If the key is in the table, the probe() method
returns the index it is stored in

e If the key is not in the table, the probe () method
returns the index of the first empty or removed
cell encountered during the search for the key

The hash table to the right has been partially filled
using linear probing and the hash function from the
previous problem. A gray cell indicates that an item has
been removed.

One of the items in the table
has been inserted incorrectly.
Which one?

0 | aardvark

2 | cat

3 | bear

I

(dog

D

The probe() method in our HashTable class

0 | aardvark

2 | cat

3 | bear

5 | dog

Determine the return value of the probe () method for:

bear

The probe() method in our HashTable class

0 | aardvark

2 | cat

3 | bear

5 | dog

Determine the return value of the probe () method for:

bear
<4—— h(bear) =1

This is a removed cell, so bear could
still be elsewhere; so linear probe for it

The probe() method in our HashTable class

0 | aardvark

2 | cat

3 | bear

5 | dog

Determine the return value of the probe () method for:

bear
h(bear) = 1

This is a removed cell, so bear could
still be elsewhere, so linear probe for it

Found bear; return 3

The probe() method in our HashTable class

0 | aardvark

2 | cat

3 | bear

5 | dog

Determine the return value of the probe () method for:

cow

The probe() method in our HashTable class

Determine the return value of the probe () method for:

0 | aardvark cow

1

2 | cat <——— h(cow) =2

3 | bear This cell is occupied, so cow could still
A be elsewhere; so linear probe for it

5 | dog

6

The probe() method in our HashTable class

Determine the return value of the probe () method for:

0 | aardvark cow

1

2 | cat h(cow) = 2

3 | bear This cell is occupied, so cow could still
be elsewhere; so linear probe for it

4 —
We have reached an empty cell, so cow

5 | dog can't be elsewhere in the table

6 Return index 4, so cow can be inserted

there

The probe() method in our HashTable class

Determine the return value of the probe () method for:

0 | aardvark buffalo

2 | cat

3 | bear

5 | dog

The probe() method in our HashTable class

Determine the return value of the probe () method for:

0 | aardvark buffalo

1 <4—— h(buffalo) =1

2 | cat This is a removed cell, so buffalo could
still be elsewhere; so linear probe for it

3 | bear

4

5 | dog

6

The probe() method in our HashTable class

Determine the return value of the probe () method for:

0 | aardvark buffalo

1 h(buffalo) = 1

2 | cat This is a removed cell, so buffalo could
still be elsewhere; so linear probe for it

3 | bear

4 <¢—— This is an empty cell, so buffalo can't be
elsewhere in the table

5 | dog
Return index 1, since that is the first

6 empty position we encountered, so that
buffalo can be inserted

The probe() method in our HashTable class

Determine the return value of the probe () method for:

0 | aardvark giraffe

2 | cat

3 | bear

5 | dog

The probe() method in our HashTable class

Determine the return value of the probe () method for:

0 | aardvark .
giraffe
1 h(giraffe) = 6
2 | cat This is a removed cell, so giraffe could
still be elsewhere; so linear probe for it
3 | bear
4
5 | dog
6 —

The probe() method in our HashTable class

Determine the return value of the probe () method for:

0 | aardvark giraffe

1 h(giraffe) = 6

2 | cat This is a removed cell, so giraffe could
still be elsewhere; so linear probe for it

3 | bear

4 ¢——— This is an empty cell, so giraffe can't be
elsewhere in the table

5 | dog
Return index 6, since that is the first

6 empty position we encountered, so that

giraffe can be inserted

The probe() method in our HashTable class

0 | aardvark

2 | cat

3 | bear

5 | dog

What is the largest probe length that we
could have for this table, regardless of its
contents?

The probe() method in our HashTable class

0 | aardvark

2 | cat

3 | bear

5 | dog

What is the largest probe length that we
could have for this table, regardless of its
contents?

7, the size of the table. After 7 positions, the
probe sequence repeats, so the probe()
method will give up after trying 7 positions.

End of section.

Questions?

