
Section 10
CSCI E-22

Will Begin Shortly

Heaps
Recall:

● Heap: a complete binary tree in which each interior node is greater than or 
equal to its children

● The maximum value is in the root node
● The minimum value can be in any one of the leaf nodes
● Often used to implement a priority queue

○ Can efficiently retrieve the highest priority value (root of max-at-top heap)
● Since a heap is a complete tree, we can use an array as a compact 

representation
○ For a parent node at index i, the left child stored in index 2*i + 1

and right child is stored in index 2*i + 2



Heaps

7 11 5 39 16 20

0 1 2 3 4 5

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 11 5 39 16 20

0 1 2 3 4 5

7 Use the child formulas to figure out 
what the parent-child edges are

Step 1: represent as 
complete tree

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.



Heaps

7 11 5 39 16 20

0 1 2 3 4 5

7

2*i + 1

11

Step 1: represent as 
complete tree

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 11 5 39 16 20

0 1 2 3 4 5

7

2*i + 1
2*i + 2

11 5

Step 1: represent as 
complete tree

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.



Heaps

7 11 5 39 16 20

0 1 2 3 4 5

7

2*i + 1

11 5

39

etc

Step 1: represent as 
complete tree

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 11 5 39 16 20

0 1 2 3 4 5

7

11 5

Can also fill in the complete tree 
from top-to-bottom, left-to-right as 
you read the array

39 16 20

depth 0 depth 1 depth 2

Step 1: represent as 
complete tree

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.



Heaps

7 11 5 39 16 20

0 1 2 3 4 5

7

11 5

39 16 20

(Remember that in a complete tree 
there can be gaps in the last level, 
as long as they are on the right) 

Step 1: represent as 
complete tree

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 11 5 39 16 20

0 1 2 3 4 5

7

11 5

39 16 20

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf node

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.



We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 11 5 39 16 20

0 1 2 3 4 5

7

11 5

39 16 20

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf node

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 11 20 39 16 5

0 1 2 3 4 5

7

11 20

39 16 5

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf node

Can't sift 5 down any further



We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 11 20 39 16 5

0 1 2 3 4 5

7

11 20

39 16 5

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf nodeIf both children are 

greater than the parent, 
choose the greatest 

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 39 20 11 16 5

0 1 2 3 4 5

7

39 20

11 16 5

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf node

Can't sift 11 down any further



We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 39 20 11 16 5

0 1 2 3 4 5

7

39 20

11 16 5

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf node

Once done sifting all of the nodes 
in a given level, move up a level

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

7 39 20 11 16 5

0 1 2 3 4 5

7

39 20

11 16 5

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf node



We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

39 7 20 11 16 5

0 1 2 3 4 5

39

7 20

11 16 5

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf nodeRecursively continue sifting 7 down

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

39 7 20 11 16 5

0 1 2 3 4 5

39

7 20

11 16 5

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf node



We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

39 16 20 11 7 5

0 1 2 3 4 5

39

16 20

11 7 5

Step 1: represent as 
complete tree
Step 2: heapify the tree

Recursively sift down all 
interior nodes, starting with the 
parent of the last leaf node

Can't sift 7 down any further

We will now convert the following 6-element array into a valid max-heap. We start 
by taking our array and representing it as a heap in the usual manner, with the first 
element as the root.

Heaps

39 16 20 11 7 5

0 1 2 3 4 5

39

16 20

11 7 5

Step 1: represent as 
complete tree
Step 2: heapify the tree



Heaps
How long does it take to create a heap from an array?

Heaps
How long does it take to create a heap from an array?

Each sift operation takes O(log n) time to sift items through the height of the heap.

There are O(n) overall sift operations.

It takes O(n log n) time to create a heap from an array.



Heapsort
We will now run through an example of heapsort. Suppose we have the following 
numbers in an array:

We want to sort the array in ascending order. If we interpret the array as a 
complete tree, it looks like this:

5 3 12 8 7 4

0 1 2 3 4 5

6

6

5

3 12

8 7 4 6

Heapsort
What's the first step of heapsort?



Heapsort
What's the first step of heapsort? Turn the array into a heap.

Heapsort
What's the first step of heapsort? Turn the array into a heap.

Should we create a min-heap or a max-heap?



Heapsort
What's the first step of heapsort? Turn the array into a heap.

Should we create a min-heap or a max-heap? We create a max-heap since we 
will be removing the largest element each time and filling the array right to left.

Heapsort
What's the first step of heapsort? Turn the array into a heap.

5

3 12

8 7 4 6



Heapsort
What's the first step of heapsort? Turn the array into a heap.

5

3 12

8 7 4 6

Heapsort
What's the first step of heapsort? Turn the array into a heap.

5

3 12

8 7 4 6



Heapsort
What's the first step of heapsort? Turn the array into a heap.

5

8 12

3 7 4 6

Heapsort
What's the first step of heapsort? Turn the array into a heap.

5

8 12

3 7 4 6



Heapsort
What's the first step of heapsort? Turn the array into a heap.

12

8 5

3 7 4 6

Heapsort
What's the first step of heapsort? Turn the array into a heap.

12

8 5

3 7 4 6



Heapsort
What's the first step of heapsort? Turn the array into a heap.

12

8 6

3 7 4 5

Heapsort
What's the first step of heapsort? Turn the array into a heap.

12

8 6

3 7 4 5



Heapsort
What is the next step?

12

8 6

3 7 4 5

Heapsort
What is the next step? Successively remove the largest element, reheapify, and 
place the largest element in the correct location in the array.

12

8 6

3 7 4 5



Heapsort

12

8 6

3 7 4 5

12 8 6 3 7 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

Heapsort

12

8 6

3 7 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

12 8 6 3 7 4 5



Heapsort

5

8 6

3 7 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

12

5 8 6 3 7 4 5

Heapsort

5

8 6

3 7 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

12

5 8 6 3 7 4 5



Heapsort

5

8 6

3 7 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

12

5 8 6 3 7 4 5

Heapsort

8

5 6

3 7 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

12

8 5 6 3 7 4 5



Heapsort

8

5 6

3 7 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

12

8 5 6 3 7 4 5

Heapsort

8

7 6

3 5 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

12

8 7 6 3 5 4 5



Heapsort

8

7 6

3 5 4 5

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

12

sorted 
portion of 

array

8 7 6 3 5 4 12

Heapsort

8

7 6

3 5 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

8 7 6 3 5 4 12



Heapsort

4

7 6

3 5 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

4 7 6 3 5 4 12

8

Heapsort

4

7 6

3 5 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

4 7 6 3 5 4 12

8



Heapsort

4

7 6

3 5 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

4 7 6 3 5 4 12

8

Heapsort

7

4 6

3 5 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

7 4 6 3 5 4 12

8



Heapsort

7

5 6

3 4 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

7 5 6 3 4 4 12

8

Heapsort

7

5 6

3 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

7 5 6 3 4 8 12



Heapsort

4

5 6

3 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

4 5 6 3 4 8 12

7

Heapsort

4

5 6

3 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

4 5 6 3 4 8 12

7



Heapsort

6

5 4

3 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

6 5 4 3 4 8 12

7

Heapsort

6

5 4

3

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

6 5 4 3 7 8 12



Heapsort

3

5 4

3

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 5 4 3 7 8 12

6

Heapsort

3

5 4

3

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 5 4 3 7 8 12

6



Heapsort

5

3 4

3

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

5 3 4 3 7 8 12

6

Heapsort

5

3 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

5 3 4 6 7 8 12



Heapsort

4

3 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

4 3 4 6 7 8 12

5

Heapsort

4

3 4

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

4 3 4 6 7 8 12

5



Heapsort

4

3

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

4 3 5 6 7 8 12

Heapsort

3

3

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 3 5 6 7 8 12

4



Heapsort

3

3

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 3 5 6 7 8 12

4

Heapsort

3

heap

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 4 5 6 7 8 12



Heapsort

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 4 5 6 7 8 12

Heapsort

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 4 5 6 7 8 12

What is the runtime of Heapsort?



Heapsort

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 4 5 6 7 8 12

What is the runtime of Heapsort?

O(n * log(n)) for heapifying the initial array

Heapsort

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 4 5 6 7 8 12

What is the runtime of Heapsort?

O(n * log(n)) for heapifying the initial array

O(n * log(n)) for n successive sift operations
+



Heapsort

Algorithm:

Repeat:
● Remove largest element
● Re-heapify
● Place removed element 

into place in array

sorted 
portion of 

array

3 4 5 6 7 8 12

What is the runtime of Heapsort?

O(n * log(n)) for heapifying the initial array

O(n * log(n)) for n successive sift operations
+

O(n * log(n)) overall

Hashing
Suppose we have a 7-element hash table, and we wish to insert following words:

apple, cat, anvil, boy, bag, dog, cup, down

We’ll use the following hash function:

h(key): index related to first letter of the key (a = 0, b = 1, ...)

Let’s insert these keys into an initially empty hash table using linear probing and 
count the total length of the probes. Then, do the same exercise, but use quadratic 
probing.



Hashing
Suppose we have a 7-element hash table, and we wish to insert following words:

apple, cat, anvil, boy, bag, dog, cup, down

We’ll use the following hash function:

h(key): index related to first letter of the key (a = 0, b = 1, ...)

Let’s insert these keys into an initially empty hash table using linear probing and 
count the total length of the probes. Then, do the same exercise, but use quadratic 
probing.

Linear probe sequence: h(x), h(x) + 1, h(x) + 2, h(x) + 3, …, h(x) + n-1
Quadratic probe sequence: h(x), h(x) + 12, h(x) + 22, h(x) + 32, …, h(x) + (n-1)2

Hashing
Suppose we have a 7-element hash table, and we wish to insert following words:

apple, cat, anvil, boy, bag, dog, cup, down

We’ll use the following hash function:

h(key): index related to first letter of the key (a = 0, b = 1, ...)

Let’s insert these keys into an initially empty hash table using linear probing and 
count the total length of the probes. Then, do the same exercise, but use quadratic 
probing.

Linear probe sequence: h(x), h(x) + 1, h(x) + 2, h(x) + 3, …, h(x) + n-1
Quadratic probe sequence: h(x), h(x) + 12, h(x) + 22, h(x) + 32, …, h(x) + (n-1)2

Wrap around as necessary 
with mod!



Linear probing

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Linear probing

apple0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0



Linear probing

apple

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

Linear probing

apple

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0



Linear probing

apple

anvil

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

Linear probing

apple

anvil

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1



Linear probing

apple

anvil

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2

Linear probing

apple

anvil

cat

boy

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3



Linear probing

apple

anvil

cat

boy

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1

Linear probing

apple

anvil

cat

boy

bag

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1
…
h(bag) = 4



Linear probing

apple

anvil

cat

boy

bag

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1
…
h(bag) = 4

h(dog) = 3

Linear probing

apple

anvil

cat

boy

bag

dog

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1
…
h(bag) = 4

h(dog) = 3
…
h(dog) = 5



Linear probing

apple

anvil

cat

boy

bag

dog

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1
…
h(bag) = 4

h(dog) = 3
…
h(dog) = 5

h(cup) = 2

Linear probing

apple

anvil

cat

boy

bag

dog

cup

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1
…
h(bag) + 3 = 4

h(dog) = 3
…
h(dog) + 2 = 5

h(cup) = 2
…
h(cup) + 4 = 6



Linear probing

apple

anvil

cat

boy

bag

dog

cup

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1
…
h(bag) + 3 = 4

h(dog) = 3
…
h(dog) + 2 = 5

h(cup) = 2
…
h(cup) + 4 = 6

h(down) = 3

Linear probing

apple

anvil

cat

boy

bag

dog

cup

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1
…
h(bag) + 3 = 4

h(dog) = 3
…
h(dog) + 2 = 5

h(cup) = 2
…
h(cup) + 4 = 6

h(down) = 3
…
h(down) + 6 = 9 % 7 = 2



Linear probing

apple

anvil

cat

boy

bag

dog

cup

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 1 = 1

h(boy) = 1
h(boy) + 1 = 2
h(boy) + 2 = 3

h(bag) = 1
…
h(bag) + 3 = 4

h(dog) = 3
…
h(dog) + 2 = 5

h(cup) = 2
…
h(cup) + 4 = 6

h(down) = 3
…
h(down) + 6 = 9 % 7 = 2

Linear probing total probe length: 26

Quadratic probing

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down



Quadratic probing

apple0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

Quadratic probing

apple

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2



Quadratic probing

apple

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0

Quadratic probing

apple

anvil

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1



Quadratic probing

apple

anvil

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1

Quadratic probing

apple

anvil

cat

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2 

apple, cat, anvil, boy, bag, dog, cup, down



Quadratic probing

apple

anvil

cat

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5 

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

apple

anvil

cat

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1 

apple, cat, anvil, boy, bag, dog, cup, down



Quadratic probing

apple

anvil

cat

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2 

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

apple

anvil

cat

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 

apple, cat, anvil, boy, bag, dog, cup, down



Quadratic probing

apple

anvil

cat

bag

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

Quadratic probing

apple

anvil

cat

bag

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

h(dog) = 3



Quadratic probing

apple

anvil

cat

bag

dog

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

h(dog) = 3
h(dog) + 12 = 4

Quadratic probing

apple

anvil

cat

bag

dog

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

h(dog) = 3
h(dog) + 12 = 4

h(cup) = 2



Quadratic probing

apple

anvil

cat

bag

dog

boy

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

h(dog) = 3
h(dog) + 12 = 4

h(cup) = 2
h(cup) + 12 = 3

Quadratic probing

apple

anvil

cat

bag

dog

boy

cup

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

h(dog) = 3
h(dog) + 12 = 4

h(cup) = 2
h(cup) + 12 = 3
h(cup) + 22 = 6



Quadratic probing

apple

anvil

cat

bag

dog

boy

cup

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

h(dog) = 3
h(dog) + 12 = 4

h(cup) = 2
h(cup) + 12 = 3
h(cup) + 22 = 6

h(down) = 3 

Quadratic probing

apple

anvil

cat

bag

dog

boy

cup

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

h(dog) = 3
h(dog) + 12 = 4

h(cup) = 2
h(cup) + 12 = 3
h(cup) + 22 = 6

h(down) = 3
…
h(down) + 62 = 39 % 7 = 4 



Quadratic probing

apple

anvil

cat

bag

dog

boy

cup

0

1

2

3

4

5

6

h(apple) = 0

h(cat) = 2

h(anvil) = 0
h(anvil) + 12 = 1

h(boy) = 1
h(boy) + 12 = 2
h(boy) + 22 = 5

h(bag) = 1
h(bag) + 12 = 2
h(bag) + 22 = 5 
h(bag) + 32 = 10 % 7 = 3

apple, cat, anvil, boy, bag, dog, cup, down

h(dog) = 3
h(dog) + 12 = 4

h(cup) = 2
h(cup) + 12 = 3
h(cup) + 22 = 6

h(down) = 3
…
h(down) + 62 = 39 % 7 = 4 

Quadratic probing total probe length: 23

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

The return value of the probe() method is an integer.

● If the key is in the table, the probe() method 
returns the index it is stored in

● If the key is not in the table, the probe() method 
returns the index of the first empty or removed 
cell encountered during the search for the key

The hash table to the right has been partially filled 
using linear probing and the hash function from the 
previous problem. A gray cell indicates that an item has 
been removed.



The probe() method in our HashTable class
The return value of the probe() method is an integer.

● If the key is in the table, the probe() method 
returns the index it is stored in

● If the key is not in the table, the probe() method 
returns the index of the first empty or removed 
cell encountered during the search for the key

The hash table to the right has been partially filled 
using linear probing and the hash function from the 
previous problem. A gray cell indicates that an item has 
been removed.

aardvark

cat

bear

dog

0

1

2

3

4

5

6

One of the items in the table 
has been inserted incorrectly. 
Which one?

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

One of the items in the table 
has been inserted incorrectly. 
Which one?

The return value of the probe() method is an integer.

● If the key is in the table, the probe() method 
returns the index it is stored in

● If the key is not in the table, the probe() method 
returns the index of the first empty or removed 
cell encountered during the search for the key

The hash table to the right has been partially filled 
using linear probing and the hash function from the 
previous problem. A gray cell indicates that an item has 
been removed.



The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

bear

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

bear

h(bear) = 1

This is a removed cell, so bear could 
still be elsewhere; so linear probe for it



The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

bear

h(bear) = 1

This is a removed cell, so bear could 
still be elsewhere, so linear probe for it

Found bear; return 3

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

cow



The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

cow

h(cow) = 2

This cell is occupied, so cow could still 
be elsewhere; so linear probe for it

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

cow

h(cow) = 2

This cell is occupied, so cow could still 
be elsewhere; so linear probe for it

We have reached an empty cell, so cow 
can't be elsewhere in the table

Return index 4, so cow can be inserted 
there



The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

buffalo

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

buffalo

h(buffalo) = 1

This is a removed cell, so buffalo could 
still be elsewhere; so linear probe for it



The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

buffalo

h(buffalo) = 1

This is a removed cell, so buffalo could 
still be elsewhere; so linear probe for it

This is an empty cell, so buffalo can't be 
elsewhere in the table

Return index 1, since that is the first 
empty position we encountered, so that 
buffalo can be inserted 

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

giraffe



The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

giraffe

h(giraffe) = 6

This is a removed cell, so giraffe could 
still be elsewhere; so linear probe for it

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

Determine the return value of the probe() method for:

giraffe

h(giraffe) = 6

This is a removed cell, so giraffe could 
still be elsewhere; so linear probe for it

This is an empty cell, so giraffe can't be 
elsewhere in the table

Return index 6, since that is the first 
empty position we encountered, so that 
giraffe can be inserted



The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

What is the largest probe length that we 
could have for this table, regardless of its 
contents?

The probe() method in our HashTable class

aardvark

cat

bear

dog

0

1

2

3

4

5

6

What is the largest probe length that we 
could have for this table, regardless of its 
contents?

7, the size of the table. After 7 positions, the 
probe sequence repeats, so the probe() 
method will give up after trying 7 positions.



End of section.

Questions?


