
Section 11
CSCI E-22

Will Begin Shortly

Double Hashing
Recall:

● Double Hashing is a collision resolution scheme that uses a second hash
function

○ h1(x) computes the hash code
○ h2(x) computes the interval for probing

Double Hashing
Recall:

● Double Hashing is a collision resolution scheme that uses a second hash
function

○ h1(x) computes the hash code
○ h2(x) computes the interval for probing

● Combines good features of linear and quadratic probing
○ Reduces clustering
○ Can be proven to always find an open position if there is one, so long as the length of the table

is a prime number

Double Hashing
For our example, we’ll use the same keys from last time, and the following hash
functions

● h1(x): index related to the first letter of the word (a = 0, b = 1, …)
● h2(x): length of the word (h2(“apple”) = 5)

Double Hashing
For our example, we’ll use the same keys from last time, and the following hash
functions

● h1(x): index related to the first letter of the word (a = 0, b = 1, …)
● h2(x): length of the word (h2(“apple”) = 5)

Let’s go through inserting elements using double hashing and count the total
length of the probes.

Double Hashing

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Double Hashing

apple0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 1

h1(apple) = 0

Double Hashing

apple

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 2

h1(apple) = 0

h1(cat) = 2

Double Hashing

apple

cat

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 3

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0

Double Hashing

apple

cat

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 4

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

Double Hashing

apple

boy

cat

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 5

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

Double Hashing

apple

boy

cat

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 6

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1

Double Hashing

apple

boy

cat

bag

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 7

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

Double Hashing

apple

boy

cat

dog

bag

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 8

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

h1(dog) = 3

Double Hashing

apple

boy

cat

dog

bag

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

h1(dog) = 3

Probe length: 9

h1(cup) = 2

Double Hashing

apple

boy

cat

dog

bag

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

h1(dog) = 3

Probe length: 10

h1(cup) = 2
h1(cup) + 1 * h2(cup) = 5

Double Hashing

apple

boy

cat

dog

bag

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

h1(dog) = 3

Probe length: 11

h1(cup) = 2
h1(cup) + 1 * h2(cup) = 5
(h1(cup) + 2 * h2(cup)) % 7 = 1

Double Hashing

apple

boy

cat

dog

bag

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

h1(dog) = 3

Probe length: 12

h1(cup) = 2
h1(cup) + 1 * h2(cup) = 5
(h1(cup) + 2 * h2(cup)) % 7 = 1
(h1(cup) + 3 * h2(cup)) % 7 = 4

Double Hashing

apple

boy

cat

dog

bag

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

h1(dog) = 3

Probe length: 13

h1(cup) = 2
h1(cup) + 1 * h2(cup) = 5
(h1(cup) + 2 * h2(cup)) % 7 = 1
(h1(cup) + 3 * h2(cup)) % 7 = 4
(h1(cup) + 4 * h2(cup)) % 7 = 0

Double Hashing

apple

boy

cat

dog

bag

anvil

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

h1(dog) = 3

Probe length: 14

h1(cup) = 2
h1(cup) + 1 * h2(cup) = 5
(h1(cup) + 2 * h2(cup)) % 7 = 1
(h1(cup) + 3 * h2(cup)) % 7 = 4
(h1(cup) + 4 * h2(cup)) % 7 = 0
(h1(cup) + 5 * h2(cup)) % 7 = 3

Double Hashing

apple

boy

cat

dog

bag

anvil

cup

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) = 0

h1(cat) = 2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) = 0 + 5 = 5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 * h2(bag) = 1 + 3 = 4

h1(dog) = 3

Probe length: 15

h1(cup) = 2
h1(cup) + 1 * h2(cup) = 5
(h1(cup) + 2 * h2(cup)) % 7 = 1
(h1(cup) + 3 * h2(cup)) % 7 = 4
(h1(cup) + 4 * h2(cup)) % 7 = 0
(h1(cup) + 5 * h2(cup)) % 7 = 3
(h1(cup) + 6 * h2(cup)) % 7 = 6

Double Hashing

apple

boy

cat

dog

bag

anvil

cup

0

1

2

3

4

5

6

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 15

We cannot insert “down” because the table is full. Using double
hashing, when the size of the hash table is a prime number,
detecting that we have overflow is linear in the size of the hash
table.

Double Hashing
apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 22

We cannot insert “down” because the table is full. Using double
hashing, when the size of the hash table is a prime number,
detecting that we have overflow is linear in the size of the hash
table.

Total probe length = 15 + 7 (for the probe length of “down”) = 22

apple

boy

cat

dog

bag

anvil

cup

0

1

2

3

4

5

6

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

What are Worcester’s neighbors in the
graph?

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

What are Worcester’s neighbors in the
graph?
Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

What are Worcester’s neighbors in the
graph?
Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

What are Worcester’s neighbors in the
graph?
Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

What are Worcester’s neighbors in the
graph?
Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Is it complete? Why or why not?

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

What are Worcester’s neighbors in the
graph?
Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Is it complete? Why or why not?
It is not, because there is not an edge
between every pair of vertices.

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

What are Worcester’s neighbors in the
graph?
Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Is it complete? Why or why not?
It is not, because there is not an edge
between every pair of vertices.

Is it acyclic? If not, give an example cycle.

Graph Terminology and Representation
Consider the graph from lecture:

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

What are Worcester’s neighbors in the
graph?
Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Is it complete? Why or why not?
It is not, because there is not an edge
between every pair of vertices.

Is it acyclic? If not, give an example cycle.
Not acyclic; Worcester > Boston >
Providence > Worcester

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

If we used an adjacency matrix to represent this
graph, what would it look like? Assume that the
vertices are numbered alphabetically, starting
from zero:

0. Albany
1. Boston
2. Concord
3. New York
4. Portland
5. Portsmouth
6. Providence
7. Worcester

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0 134

1

2

3

4

5

6

7 134

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0 134

1 74 54 49 44

2 74

3

4

5 54

6 49

7 134 44

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0 134

1 74 54 49 44

2 74 84 63

3

4 84

5 54

6 49

7 134 44 63

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0 134

1 74 54 49 44

2 74 84 63

3 185

4 84

5 54

6 49 185

7 134 44 63

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0 134

1 74 54 49 44

2 74 84 63

3 185

4 84 39

5 54 39

6 49 185

7 134 44 63

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0 134

1 74 54 49 44

2 74 84 63

3 185

4 84 39

5 54 39 83

6 49 185

7 134 44 63 83

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0 134

1 74 54 49 44

2 74 84 63

3 185

4 84 39

5 54 39 83

6 49 185 42

7 134 44 63 83 42

Graph Terminology and Representation

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

0 1 2 3 4 5 6 7

0 134

1 74 54 49 44

2 74 84 63

3 185

4 84 39

5 54 39 83

6 49 185 42

7 134 44 63 83 42

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

In what order would the cities be visited if we
performed a depth-first traversal from Boston?
Draw the resulting spanning tree.

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

In what order would the cities be visited if we
performed a depth-first traversal from Boston?
Draw the resulting spanning tree.

Remember that we assume adjacency lists sort
edges in order of increasing weight!

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

Boston,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): visit Worcester, set
its parent reference to Boston, make a recursive
call on closest neighbor, Providence

Boston, Worcester,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): visit Worcester, set
its parent reference to Boston, make a recursive
call on closest neighbor, Providence

dfTrav(Providence, Worcester): visit Providence,
set its parent reference to Worcester, recurse to
nearest unvisited neighbor, New York

Boston, Worcester, Providence,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): visit Worcester, set
its parent reference to Boston, make a recursive
call on closest neighbor, Providence

dfTrav(Providence, Worcester): visit Providence,
set its parent reference to Worcester, recurse to
nearest unvisited neighbor, New York

dfTrav(New York, Providence): visit NY, set its
parent reference to Providence. No unvisited
neighbors, so return.

Boston, Worcester, Providence, NY,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): visit Worcester, set
its parent reference to Boston, make a recursive
call on closest neighbor, Providence

dfTrav(Providence, Worcester): visit Providence,
set its parent reference to Worcester, recurse to
nearest unvisited neighbor, New York

- Providence has no unvisited neighbors, so
return

Boston, Worcester, Providence, NY,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

Boston, Worcester, Providence, NY,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

Boston, Worcester, Providence, NY, Concord

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

dfTrav(Portland, Concord): visit Portland, set its
parent reference to Concord, and recurse on
Portsmouth

Boston, Worcester, Providence, NY, Concord, Portland

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

dfTrav(Portland, Concord): visit Portland, set its
parent reference to Concord, and recurse on
Portsmouth

dfTrav(Portsmouth, Portland): visit Portsmouth,
set its parent reference to Portland. No unvisited
neighbors, so return

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

dfTrav(Portland, Concord): visit Portland, set its
parent reference to Concord, and recurse on
Portsmouth

- Portland has no unvisited neighbors, so
return

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

- Concord has no unvisited neighbors, so
return

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth,

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Albany

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth,

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Albany

dfTrav(Albany, Worcester): visit Albany, set its
parent reference to Worcester. No unvisited
neighbors, so return

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Albany

- Worcester has no unvisited neighbors, so
return

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

- Boston has no unvisited neighbors, so we
return, and complete the DF traversal!

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

42

3984

63

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

- Boston has no unvisited neighbors, so we
return, and complete the DF traversal!

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

42

3984

63

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

Our depth-first spanning tree:

Graph Traversals

Concord Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

Our depth-first spanning tree:

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

In what order would the cities be visited if we
performed a breadth-first traversal from
Boston? Draw the resulting spanning tree.

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

In what order would the cities be visited if we
performed a breadth-first traversal from
Boston? Draw the resulting spanning tree.

Remember, with breadth-first traversal, we mark
a node as “encountered” before it’s put into the
queue, and visit it after it’s dequeued.

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

In what order would the cities be visited if we
performed a breadth-first traversal from
Boston? Draw the resulting spanning tree.

Remember, with breadth-first traversal, we mark
a node as “encountered” before it’s put into the
queue, and visit it after it’s dequeued.

We set parent references when we “encounter”
a node.

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

44

83
54

3984

74

63

134

remove insert queue contents

Boston Boston

44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

134

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Boston,

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Worcester Albany Providence, Portsmouth,
Concord, Albany

Boston, Worcester,

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Worcester Albany Providence, Portsmouth,
Concord, Albany

Providence NY Portsmouth, Concord,
Albany, NY

Boston, Worcester, Providence

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Worcester Albany Providence, Portsmouth,
Concord, Albany

Providence NY Portsmouth, Concord,
Albany, NY

Portsmouth Portland Concord, Albany, NY,
Portland

Boston, Worcester, Providence, Portsmouth

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Worcester Albany Providence, Portsmouth,
Concord, Albany

Providence NY Portsmouth, Concord,
Albany, NY

Portsmouth Portland Concord, Albany, NY,
Portland

Concord none Albany, NY, Portland

Boston, Worcester, Providence, Portsmouth, Concord,

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Worcester Albany Providence, Portsmouth,
Concord, Albany

Providence NY Portsmouth, Concord,
Albany, NY

Portsmouth Portland Concord, Albany, NY,
Portland

Concord none Albany, NY, Portland

Albany none NY, Portland

Boston, Worcester, Providence, Portsmouth, Concord, Albany,

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Worcester Albany Providence, Portsmouth,
Concord, Albany

Providence NY Portsmouth, Concord,
Albany, NY

Portsmouth Portland Concord, Albany, NY,
Portland

Concord none Albany, NY, Portland

Albany none NY, Portland

NY none Portland

Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY,

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

4942

83
54

3984

74

63

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Worcester Albany Providence, Portsmouth,
Concord, Albany

Providence NY Portsmouth, Concord,
Albany, NY

Portsmouth Portland Concord, Albany, NY,
Portland

Concord none Albany, NY, Portland

Albany none NY, Portland

NY none Portland

Portland none empty

Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY, Portland

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

49

54

39

74

remove insert queue contents

Boston Boston

Boston Worcester,
Providence,
Portsmouth,
Concord

Worcester, Providence,
Portsmouth, Concord

Worcester Albany Providence, Portsmouth,
Concord, Albany

Providence NY Portsmouth, Concord,
Albany, NY

Portsmouth Portland Concord, Albany, NY,
Portland

Concord none Albany, NY, Portland

Albany none NY, Portland

NY none Portland

Portland none empty

Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY, Portland

134 44

Graph Traversals

Concord

Albany

New York

Worcester

Providence

Boston

Portsmouth

Portland

185

49

54

39

74

Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY, Portland

Our breadth-first spanning
tree:

Graph Traversals

Concord

Albany New York

Worcester Providence

Boston

Portsmouth

Portland

Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY, Portland

Our breadth-first spanning
tree:

End of section.

Questions?

Lecture 13
CSCI E-22

Will Begin Shortly

