Section 11
CSCI E-22

Will Begin Shortly

Double Hashing

Recall:

e Double Hashing is a collision resolution scheme that uses a second hash

function
o h1(x) computes the hash code
o h2(x) computes the interval for probing

Double Hashing

Recall:

e Double Hashing is a collision resolution scheme that uses a second hash

function
o h1(x) computes the hash code
o h2(x) computes the interval for probing
e Combines good features of linear and quadratic probing
o Reduces clustering
o Can be proven to always find an open position if there is one, so long as the length of the table
is a prime number

Double Hashing

For our example, we'll use the same keys from last time, and the following hash
functions

e h1(x): index related to the first letter of the word (a=0,b =1, ...)
e h2(x): length of the word (h2(“apple”) = 5)

Double Hashing

For our example, we'll use the same keys from last time, and the following hash
functions

e h1(x): index related to the first letter of the word (a=0,b =1, ...)
e h2(x): length of the word (h2(“apple”) = 5)

Let’s go through inserting elements using double hashing and count the total
length of the probes.

apple, cat, anvil, boy, bag, dog, cup, down

Double Hashing

Double Hashing

0 | apple

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 1

h1(apple) =0

Double Hashing

0 | apple

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 2
h1(apple) =0

h1(cat) =2

Double Hashing

0 | apple

2 | cat

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) =0
h1(cat) = 2
h1(anvil) =0

Probe length: 3

Double Hashing

0 | apple

2 | cat

5 | anvil

apple, cat, anvil, boy, bag, dog, cup, down

h1(apple) =0
h1(cat) =2
h1(anvil) =0

h1(anvil) + 1 * h2(anvil) =0+ 5=5

Probe length: 4

Double Hashing

0 | apple

1 | boy

2 | cat

5 | anvil

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 5

h1(apple) =0
h1(cat) = 2
h1(anvil) =0

h1(anvil) + 1 * h2(anvil) =0+ 5=5

h1(boy) =1

Double Hashing

0 | apple

1 | boy

2 | cat

5 | anvil

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 6
h1(apple) =0
h1(cat) =2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) =0+ 5=5

h1(boy) = 1

h1(bag) = 1

Double Hashing

0 | apple

1 | boy

2 | cat

4 | bag

5 | anvil

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 7
h1(apple) =0
h1(cat) = 2

h1(anvil) =0
h1(anvil) + 1 *h2(anvi)=0+5=5

h1(boy) =1

h1(bag) = 1
h1(bag) + 1 *h2(bag)=1+3=4

Double Hashing

0 | apple

1| boy

2 | cat

3 | dog

4 | bag

5 | anvil

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 8
h1(apple) =0
h1(cat) =2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) =0+ 5=5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 *h2(bag)=1+3=4

h1(dog) =3

Double Hashing

0 | apple

1| boy

2 | cat

3 | dog

4 | bag

5 | anvil

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 9
h1(apple) =0 h1(cup) =2
h1(cat) = 2

h1(anvil) =0
h1(anvil) + 1 *h2(anvi)=0+5=5

h1(boy) =1

h1(bag) = 1
h1(bag) + 1 *h2(bag)=1+3=4

h1(dog) = 3

Double Hashing

0 | apple

1| boy

2 | cat

3 | dog

4 | bag

5 | anvil

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 10
h1(apple) = 0 h1(cup) =2
h1(cup) + 1 * h2(cup) =5
h1(cat) =2

h1(anvil) = 0
h1(anvil) + 1 * h2(anvil) =0+ 5=5

h1(boy) = 1

h1(bag) = 1
h1(bag) + 1 *h2(bag)=1+3=4

h1(dog) =3

apple, cat, anvil, boy, bag, dog, cup, down

Double Hashing

Probe length: 11

h1(apple) =0 h1(cup) =2
0 | apple h1(cup) + 1 * h2(cup) =5
h1(cat) =2 (h1(cup) + 2 * h2(cup)) % 7 =1
1
boy h1(anvil) = 0
2| cat h1(anvil) + 1 *h2(anvi)=0+5=5
3| dog h1(boy) =1
4 | bag h1(bag) = 1
h1(bag) + 1 *h2(bag)=1+3=4
5 .
anvil h1(dog) = 3
6

apple, cat, anvil, boy, bag, dog, cup, down

Double Hashing

Probe length: 12

h1(apple) = 0 h1(cup) =2

0 | apple h1(cup) + 1 * h2(cup) =5
h1(cat) =2 (h1(cup) + 2 * h2(cup)) % 7 =1

1| boy (h1(cup) + 3 * h2(cup)) % 7 =4
h1(anvil) =0

2 | cat h1(anvil) + 1 *h2(anvi)=0+5=5

3 | dog h1(boy) =1

4 | bag h1(bag) = 1
h1(bag) + 1 *h2(bag) =1+3 =4

5 | anvil h1(dog) = 3

6

apple, cat, anvil, boy, bag, dog, cup, down

Double Hashing

Probe length: 13

h1(apple) =0 h1(cup) =2

0 | apple h1(cup) + 1 * h2(cup) =5
h1(cat) =2 (h1(cup) + 2 * h2(cup)) % 7 =1

1| boy (h1(cup) + 3 * h2(cup)) % 7 =4
h1(anvil) =0 (h1(cup) +4 *h2(cup)) % 7=0

2| cat h1(anvil) + 1 *h2(anvi)=0+5=5

3| dog h1(boy) =1

4 | bag h1(bag) = 1
h1(bag) + 1 *h2(bag)=1+3=4

5 .

anvil h1(dog) = 3
6

apple, cat, anvil, boy, bag, dog, cup, down

Double Hashing

Probe length: 14

h1(apple) = 0 h1(cup) =2
0 | apple h1(cup) + 1 * h2(cup) =5
h1(cat) =2 (h1(cup) + 2 * h2(cup)) % 7 =1
1| boy (h1(cup) + 3 * h2(cup)) % 7 =4
h1(anvil) =0 (h1(cup) +4 * h2(cup)) % 7=0
2 | cat h1(anvil) + 1 *h2(anvil)=0+5=5 (h1(cup) + 5 * h2(cup)) % 7 =3
3 | dog h1(boy) =1
4 | bag h1(bag) = 1
h1(bag) + 1 *h2(bag) =1+3 =4
5 | anvil h1(dog) = 3
6

apple, cat, anvil, boy, bag, dog, cup, down

Double Hashing

Probe length: 15

h1(apple) =0 h1(cup) =2
0 | apple h1(cup) + 1 * h2(cup) =5
h1(cat) =2 (h1(cup) + 2 * h2(cup)) % 7 =1
1| boy (h1(cup) + 3 * h2(cup)) % 7 =4
h1(anvil) =0 (h1(cup) +4 *h2(cup)) % 7=0
2| cat h1(anvil) + 1 *h2(anvil)=0+5=5 (h1(cup) +5 *h2(cup)) % 7 =3
(h1(cup) + 6 * h2(cup)) % 7 =6
3| dog h1(boy) =1
4 | bag h1(bag) = 1
h1(bag) + 1 *h2(bag)=1+3=4
5 .
anvil h1(dog) = 3
6 | cup

apple, cat, anvil, boy, bag, dog, cup, down

Double Hashing

Probe length: 15

0 | apple We cannot insert “down” because the table is full. Using double
hashing, when the size of the hash table is a prime number,

1| boy detecting that we have overflow is linear in the size of the hash
table.

2 | cat

3 | dog

4 | bag

5 | anvil

6 | cup

Double Hashing

0 | apple

1| boy

2 | cat

3 | dog

4 | bag

5 | anvil

6 | cup

apple, cat, anvil, boy, bag, dog, cup, down

Probe length: 22

We cannot insert “down” because the table is full. Using double
hashing, when the size of the hash table is a prime number,
detecting that we have overflow is linear in the size of the hash
table.

Total probe length = 15 + 7 (for the probe length of “down”) = 22

Graph Terminology and Representation

Consider the graph from lecture:

84

134

Portland

42 49
185

Portsmouth

Graph Terminology and Representation

Consider the graph from lecture: What are Worcester’s neighbors in the

graph?
Portland

84

63

Portsmouth

54

42 49

Providence

New York

185

Graph Terminology and Representation

Consider the graph from lecture: What are Worcester’s neighbors in the

graph?
Portland

Albany, Boston, Concord, Portsmouth,

84

Portsmouth to each of them by a single edge.

and Providence, because it is connected
134

42 49
185

Graph Terminology and Representation

Consider the graph from lecture:

Portland

84

63

New York Providence

185

Portsmouth

42 49

54

What are Worcester’s neighbors in the
graph?

Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?

Graph Terminology and Representation

Consider the graph from lecture:

Portland

134

84

42 49
185

Portsmouth

What are Worcester’s neighbors in the
graph?

Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Graph Terminology and Representation

Consider the graph from lecture:

Portland

84

63

New York

185

42 49

Providence

Portsmouth

54

What are Worcester’s neighbors in the
graph?

Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Is it complete? Why or why not?

Graph Terminology and Representation

Consider the graph from lecture:

Portland

84

63

Providence

185

42 49

Portsmouth

54

What are Worcester’s neighbors in the
graph?

Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Is it complete? Why or why not?
It is not, because there is not an edge
between every pair of vertices.

Graph Terminology and Representation

Consider the graph from lecture:

Portland

84

63

New York Providence

185

42 49

Portsmouth

54

What are Worcester’s neighbors in the
graph?

Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Is it complete? Why or why not?
It is not, because there is not an edge
between every pair of vertices.

Is it acyclic? If not, give an example cycle.

Graph Terminology and Representation

Consider the graph from lecture:

Portland

84

63

Providence

185

42 49

Portsmouth

54

What are Worcester’s neighbors in the
graph?

Albany, Boston, Concord, Portsmouth,
and Providence, because it is connected
to each of them by a single edge.

Is the graph connected? Why or why not?
Yes, because there is a path between
every pair of vertices.

Is it complete? Why or why not?
It is not, because there is not an edge
between every pair of vertices.

Is it acyclic? If not, give an example cycle.
Not acyclic; Worcester > Boston >
Providence > Worcester

Graph Terminology and Representation

If we used an adjacency matrix to represent this
graph, what would it look like? Assume that the
vertices are numbered alphabetically, starting
from zero:

Portsmouth
. Albany

. Boston

. Concord

. New York

. Portland

. Portsmouth
. Providence
. Worcester

54

Worcester

Boston]
134

42 49

Providence
185

NOoO Ok~ WN -0

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

Graph Terminology and Representation

0 1 2 3 4 5 6 7

0

1

2

3

134 Worcester 4
42 49 5

Providence 6
185

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

Graph Terminology and Representation

0 1 2 3 4 5 6 7

0 134
Portsmouth 1
2
54
3

Boston] 4

Worcester

134

42 49 5
Providence 6
185
7 134

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester
Graph Terminology and Representation
0 1 2 3 4 5 6 7
0 134
1 74 54 |49 | 44

2 74

Worcester 4
134

42 49 5 54

New York Providence 6 49
| NewYork |

7 | 134 |44

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

Graph Terminology and Representation

0 1

0

Portsmouth !
2 74

54
3
Worcester Boston] 4
134

42 49 5 54
New York Providence 6 49
7 134 | 44

2 |3 4
74

84
84
63

54

49

134

44

63

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

Graph Terminology and Representation

0 1
0
1
2 74
3
Worcester 4
134
42 49 5 54

New York Providence 6 49
| NewYork [

7 | 134 |44

2 3 |4
74
84
84
185
63

54

49

185

134

44

63

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

Graph Terminology and Representation

0 1

0

Portsmouth !
2 74

54
3
Worcester Boston] 4
134

42 49 5 54
New York Providence 6 49
7 134 | 44

2

74

84

63

185

84

39

5 6
54 | 49

185
39

134

44

63

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

Graph Terminology and Representation

0 1

Portland 9 0

84

2 74

3

Worcester Boston] 4

134

42 49 5 54

New York Providence 6 49
| NewYork |

7 | 134 |44

2

74

84

63

185

84

39

5 6

54 | 49
185

39

83

134

44

63

83

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

Graph Terminology and Representation

0 1

0

Portsmouth !
2 74

54
3
Worcester Boston] 4
134

42 49 5 54
New York Providence 6 49
7 134 | 44

2 |3 4
74
84
84
39
185
63

54

39

83

49

185

42

134

44

63

83

42

0: Albany, 1: Boston, 2: Concord, 3: NY, 4: Portland, 5: Portsmouth, 6: Providence, 7: Worcester

Graph Terminology and Representation

0 1
0
1
2 74
3
Worcester 4
134
42 49 5 54

New York Providence 6 49
| NewYork |

7 134 | 44

2 3 4
74
84
84
39
185
63

54

39

83

49

185

42

134

44

63

83

42

Graph Trave rsaIS In what order would the cities be visited if we

performed a depth-first traversal from Boston?
Draw the resulting spanning tree.

Portsmouth

54

Worcester

Boston]
134

42 49

Providence
185

Graph Trave rsaIS In what order would the cities be visited if we

performed a depth-first traversal from Boston?
Draw the resulting spanning tree.

Remember that we assume adjacency lists sort
edges in order of increasing weight!

Worcester

134

42 49

Providence
185

Boston,

G ra p h Traversals dfTrav(Boston, null): visit Boston, set its parent

reference to null, and make a recursive call on
closest neighbor, Worcester

Portsmouth

Concord

54

Boston]

Worcester

134

42 49

Providence
185

Boston, Worcester,

G ra p h Trave rsa I S dfTrav(Boston, null): visit Boston, set its parent

reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): visit Worcester, set
its parent reference to Boston, make a recursive
call on closest neighbor, Providence

Worcester

134

42 49

Providence
185

Boston, Worcester, Providence,

Graph Traversals

Portsmouth

Concord

54

Boston]

Worcester

134

42 49

Providence

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): visit Worcester, set
its parent reference to Boston, make a recursive
call on closest neighbor, Providence

dfTrav(Providence, Worcester): visit Providence,
set its parent reference to Worcester, recurse to
nearest unvisited neighbor, New York

Boston, Worcester, Providence, NY,

Graph Traversals

Worcester

134

185

42 49

Providence

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): visit Worcester, set
its parent reference to Boston, make a recursive
call on closest neighbor, Providence

dfTrav(Providence, Worcester): visit Providence,
set its parent reference to Worcester, recurse to
nearest unvisited neighbor, New York

dfTrav(New York, Providence): visit NY, set its
parent reference to Providence. No unvisited
neighbors, so return.

Boston, Worcester, Providence, NY,

Graph Traversals

Portsmouth

54

Boston]

Worcester

134

42 49

Providence

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): visit Worcester, set
its parent reference to Boston, make a recursive
call on closest neighbor, Providence

dfTrav(Providence, Worcester): visit Providence,
set its parent reference to Worcester, recurse to
nearest unvisited neighbor, New York
- Providence has no unvisited neighbors, so
return

Boston, Worcester, Providence, NY,

Graph Traversals

Worcester
134

185

42 49

Providence

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

Boston, Worcester, Providence, NY, Concord

G ra ph Trave rsaIS dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

Portsmouth

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

54

Boston]

Worcester

134

42 49

Providence
185

Boston, Worcester, Providence, NY, Concord, Portland

G ra ph Trave rsaIS dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

Concord

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

134 Worcester dfTrav(Portland, Concord): visit Portland, set its
parent reference to Concord, and recurse on
42 49 Portsmouth

Providence
185

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth,

Graph Traversals

Portsmouth

54

Worcester

Boston]
134

42 49

Providence
185

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

dfTrav(Portland, Concord): visit Portland, set its
parent reference to Concord, and recurse on
Portsmouth

dfTrav(Portsmouth, Portland): visit Portsmouth,
set its parent reference to Portland. No unvisited
neighbors, so return

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth,

Graph Traversals

Concord

Worcester
134

42 49

Providence
185

dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

dfTrav(Portland, Concord): visit Portland, set its
parent reference to Concord, and recurse on
Portsmouth
- Portland has no unvisited neighbors, so
return

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth,

G ra p h Traversals dfTrav(Boston, null): visit Boston, set its parent

reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Concord

Portsmouth

dfTrav(Concord, Worcester): visit Concord, set
its parent reference to Worcester, and recurse
on nearest unvisited neighbor, Portland

- Concord has no unvisited neighbors, so
Boston] return

54

Worcester

134

42 49

Providence
185

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth,

G ra ph Trave rsaIS dfTrav(Boston, null): visit Boston, set its parent
reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Albany

Concord

Worcester
134

42 49

Providence
185

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

G ra p h Traversals dfTrav(Boston, null): visit Boston, set its parent

reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Albany

Portsmouth

dfTrav(Albany, Worcester): visit Albany, set its
parent reference to Worcester. No unvisited
neighbors, so return

54

Boston]

Worcester

42 49

Providence
185

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

G ra p h Trave rsa I S dfTrav(Boston, null): visit Boston, set its parent

reference to null, and make a recursive call on
closest neighbor, Worcester

dfTrav(Worcester, Boston): Worcester still has
unvisited neighbors, so we recurse on the next
closest one: Albany
- Worcester has no unvisited neighbors, so
return

Portsmouth

Concord

Boston]

Worcester

134

42 49

Providence
185

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

G ra p h Traversals dfTrav(Boston, null): visit Boston, set its parent

reference to null, and make a recursive call on
closest neighbor, Worcester
- Boston has no unvisited neighbors, so we
return, and complete the DF traversal!

Portsmouth

54

Boston]

Worcester

42 49

Providence
185

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

G ra p h Trave rsa I S dfTrav(Boston, null): visit Boston, set its parent

reference to null, and make a recursive call on
closest neighbor, Worcester
- Boston has no unvisited neighbors, so we
return, and complete the DF traversal!

Portland

Portsmouth

Concord

Worcester a4 Boston]

134

42

Providence
185

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

Graph Traversals

Our depth-first spanning tree: 84 ‘ Portland ’ 39
‘ Concord ‘ Portsmouth ’
63
‘ Albany 134 Worcester ’7@——+ Boston ’
42
‘ New York 185 Providence ’

Boston, Worcester, Providence, NY, Concord, Portland, Portsmouth, Albany

Graph Traversals

Our depth-first spanning tree: Boston
Worcester
|
‘ Concord ’ Albany ‘ Providence ’
‘ Portiand ’ ‘ New York

‘ Portsmouth ’

Graph Trave rsaIS In what order would the cities be visited if we

performed a breadth-first traversal from
Boston? Draw the resulting spanning tree.

Portsmouth

54

Worcester

Boston]
134

42 49

Providence
185

Graph Trave rsaIS In what order would the cities be visited if we

performed a breadth-first traversal from
Boston? Draw the resulting spanning tree.

Remember, with breadth-first traversal, we mark
a node as “encountered” before it’s put into the
queue, and visit it after it's dequeued.

Worcester

134

42 49

Providence
185

Graph Trave rsaIS In what order would the cities be visited if we

performed a breadth-first traversal from
Boston? Draw the resulting spanning tree.

Remember, with breadth-first traversal, we mark
a node as “encountered” before it's put into the
queue, and visit it after it's dequeued.

Portsmouth

We set parent references when we “encounter”

54 a node.

Worcester

Boston]
134

42 49

Providence
185

remove insert queue contents

Graph Traversals

Boston Boston

Worcester

134

42 49

Providence
185

Boston,

G remove insert queue contents
p Boston Boston

Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
Portsmouth,
Concord

Portsmouth
54
Worcester Boston]
134
42 49
185
Boston, Worcester,
remove insert queue contents
Graph Traversals

Boston Boston

Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
Portsmouth,
Concord

Portsmouth

Worcester | Albany

Worcester

134

42 49

Providence
185

Providence, Portsmouth,
Concord, Albany

Boston, Worcester, Providence

G remove insert queue contents
p Boston Boston
Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
Portsmouth,
Concord
Portsmouth Worcester | Albany Providence, Portsmouth,
Concord, Albany
54 Providence | NY Portsmouth, Concord,
Albany, NY
Worcester Boston]
134
42 49
Boston, Worcester, Providence, Portsmouth
remove insert queue contents
Graph Traversals oo oo
Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
Portsmouth,
Concord
Worcester Albany Providence, Portsmouth,

Concord

Providence NY

Portsmouth | Portland

Worcester

134

185

42 49

Providence

Concord, Albany

Portsmouth, Concord,
Albany, NY

Concord, Albany, NY,
Portland

Boston, Worcester, Providence, Portsmouth, Concord,

remove insert queue contents
Graph Traversals Socton —
Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
Portsmouth,
Concord
Portsmouth Worcester Albany Providence, Portsmouth,

Concord, Albany

54 Providence | NY Portsmouth, Concord,
Albany, NY
Worcester Boston] Portsmouth | Portland Concord, Albany, NY,
134 Portland
42 49 Concord none Albany, NY, Portland

Providence
185

Boston, Worcester, Providence, Portsmouth, Concord, Albany,

remove insert queue contents
Graph Traversals coston Soston
Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
84 Portland 9 gg:zg]rzum’
Worcester Albany Providence, Portsmouth,

Concord, Albany

Providence | NY Portsmouth, Concord,
Albany, NY
Worcester Boston] Portsmouth | Portland Concord, Albany, NY,
134 Portland
42 49 Concord none Albany, NY, Portland

185 Providence Albany none NY, Portland

Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY;

remove insert queue contents
Graph Traversals Socton Socon
Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
Portsmouth,
Concord
Portsmouth Worcester Albany Providence, Portsmouth,
Concord, Albany
54 Providence | NY Portsmouth, Concord,
Albany, NY
Worcester Boston] Portsmouth | Portland Concord, Albany, NY,
134 Portland
42 49 Concord none Albany, NY, Portland
185 Providence Albany none NY, Portland
NY none Portland
Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY; Portland
remove insert queue contents
Graph Traversals oo oo
Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
Portsmouth,
84 Portland 9 Concord
Worcester Albany Providence, Portsmouth,
Concord, Albany
Providence | NY Portsmouth, Concord,
Albany, NY
Worcester Boston] Portsmouth | Portland Concord, Albany, NY,
134 Portland
42 49 Concord none Albany, NY, Portland
185 Providence Albany none NY, Portland
NY none Portland
Portland none empty

Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY; Portland

remove insert queue contents
Graph Traversals Socton Socon
Boston Worcester, Worcester, Providence,
Providence, Portsmouth, Concord
Portsmouth,
Concord
Portsmouth Worcester Albany Providence, Portsmouth,
Concord, Albany
54 Providence | NY Portsmouth, Concord,
Albany, NY
Albany Worcester Boston] Portsmouth | Portland Concord, Albany, NY,
134 Portland
49 Concord none Albany, NY, Portland
185 Providence Albany none NY, Portland
NY none Portland
Portland none empty
Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY, Portland
Graph Traversals
Our breadth-first spanning ‘ Portland ’ 39
tree:
‘ Concord ‘ Portsmouth ’
54
‘ Albany Worcester Boston ’
134
9
‘ New York Providence

185

Boston, Worcester, Providence, Portsmouth, Concord, Albany, NY, Portland

Graph Traversals

Our breadth-first spanning
tree: Boston
‘ Concord ’ ‘ Worcester ’ ‘ Providence ’ ‘ Portsmouth ’
‘ Albany ’ ‘ New York ’ ‘ Portland

End of section.

Questions?

Lecture 13
CSCI E-22

Will Begin Shortly

