Section 12

CSCI E-22

Will Begin Shortly

Graphs: Minimum Spanning Trees

Recall:

e A minimum spanning tree (MST) has the smallest total cost among all

possible spanning trees.
o If all edges have unique costs, there is only one MST. However, if some edges have the same
cost, there may be more than one.




Graphs: Minimum Spanning Trees

Recall:

e A minimum spanning tree (MST) has the smallest total cost among all
possible spanning trees.

o If all edges have unique costs, there is only one MST. However, if some edges have the same

cost, there may be more than one.
e One way we can find a MST is Prim’s MST Algorithm
o Use sets A and B, staring with one vertex in set A and all others in set B
o Select the lowest cost edge that connects set A to set B, and add it to the spanning tree
o Move the newly connected vertex from set B to set A
O

Repeat

Consider the following weighted, undirected graph representing the distances

from city to city by way of the Autobahn in Germany:
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Remember:

e The MST is the spanning tree with the minimal total edge cost.

e |t does not necessarily include the minimal cost path between a pair of

vertices.




Remember:

e The MST is the spanning tree with the minimal total edge cost.
e |t does not necessarily include the minimal cost path between a pair of
vertices.

It can be helpful to know the shortest path from one vertex to another; how can we
figure this out?

Dijkstra’s Algorithm

e Allows us to find the shortest path from a vertex v (the origin) to all other
vertices that can be reached from v.

How?

e Maintain estimates of the shortest paths from the origin to every vertex (along
with their costs)
e Gradually refine these estimates as we traverse the graph




Using our same graph as before, use Dijkstra’s shortest path algorithm to
obtain the shortest paths starting from Cologne.
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Topological Sort

Recall:
e Used to order the vertices in a directed acyclic graph (a DAG).
e Itis an ordering of the vertices such that, if there is directed edge from a to b,

a comes before b.

Topological Sort

/ e S = a stack to hold the vertices
while there are still unvisited

C [ )
\ vertices:
e o find a vertex v with no

unvisited successors mark v
as visited
o S.push(v)
e retun S
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*For the purpose of this section, tie-breaker will be what
comes first alphabetically




