
Section 12
CSCI E-22

Will Begin Shortly

Graphs: Minimum Spanning Trees

Recall:

● A minimum spanning tree (MST) has the smallest total cost among all
possible spanning trees.

○ If all edges have unique costs, there is only one MST. However, if some edges have the same
cost, there may be more than one.

Graphs: Minimum Spanning Trees

Recall:

● A minimum spanning tree (MST) has the smallest total cost among all
possible spanning trees.

○ If all edges have unique costs, there is only one MST. However, if some edges have the same
cost, there may be more than one.

● One way we can find a MST is Prim’s MST Algorithm
○ Use sets A and B, staring with one vertex in set A and all others in set B
○ Select the lowest cost edge that connects set A to set B, and add it to the spanning tree
○ Move the newly connected vertex from set B to set A
○ Repeat

Consider the following weighted, undirected graph representing the distances
from city to city by way of the Autobahn in Germany:

Hamburg

BerlinDüsseldorf

Cologne

Frankfurt am Main Stuttgart

Munich
*not to scale

401

39

567

580

191 204
233

293

640

Hamburg

BerlinDüsseldorf

Cologne

Frankfurt am Main Stuttgart

Munich

401

39

567

580

191 204

233

293

640

Edge
Added

Set A Set B

Remember:

● The MST is the spanning tree with the minimal total edge cost.
● It does not necessarily include the minimal cost path between a pair of

vertices.

Remember:

● The MST is the spanning tree with the minimal total edge cost.
● It does not necessarily include the minimal cost path between a pair of

vertices.

It can be helpful to know the shortest path from one vertex to another; how can we
figure this out?

Dijkstra’s Algorithm

● Allows us to find the shortest path from a vertex v (the origin) to all other
vertices that can be reached from v.

How?

● Maintain estimates of the shortest paths from the origin to every vertex (along
with their costs)

● Gradually refine these estimates as we traverse the graph

Using our same graph as before, use Dijkstra’s shortest path algorithm to
obtain the shortest paths starting from Cologne.

Hamburg

BerlinDüsseldorf

Cologne

Frankfurt am Main Stuttgart

Munich

401

39

567

580

191 204
233

293

640

Hamburg

BerlinDüsseldorf

Cologne

Frankfurt am Main Stuttgart

Munich

401

39

567

580

191 204

233

293

640

B ∞

C 0

D ∞

F ∞

H ∞

M ∞

S ∞

Topological Sort

Recall:
● Used to order the vertices in a directed acyclic graph (a DAG).
● It is an ordering of the vertices such that, if there is directed edge from a to b,

a comes before b.

 A B

 C D

 E

 F G

Topological Sort
● S = a stack to hold the vertices
● while there are still unvisited

vertices:
○ find a vertex v with no

unvisited successors mark v
as visited

○ S.push(v)
● return S

 A B

 C D

 E

 F G

Push:

Stack:

*For the purpose of this section, tie-breaker will be what
comes first alphabetically

