
Section 12
CSCI E-22

Will Begin Shortly

Graphs: Minimum Spanning Trees 

Recall:

● A minimum spanning tree (MST) has the smallest total cost among all 
possible spanning trees.

○ If all edges have unique costs, there is only one MST. However, if some edges have the same 
cost, there may be more than one.



Graphs: Minimum Spanning Trees 

Recall:

● A minimum spanning tree (MST) has the smallest total cost among all 
possible spanning trees.

○ If all edges have unique costs, there is only one MST. However, if some edges have the same 
cost, there may be more than one.

● One way we can find a MST is Prim’s MST Algorithm
○ Use sets A and B, staring with one vertex in set A and all others in set B
○ Select the lowest cost edge that connects set A to set B, and add it to the spanning tree
○ Move the newly connected vertex from set B to set A
○ Repeat

Consider the following weighted, undirected graph representing the distances 
from city to city by way of the Autobahn in Germany:
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Remember:

● The MST is the spanning tree with the minimal total edge cost.
● It does not necessarily include the minimal cost path between a pair of 

vertices.



Remember:

● The MST is the spanning tree with the minimal total edge cost.
● It does not necessarily include the minimal cost path between a pair of 

vertices.

It can be helpful to know the shortest path from one vertex to another; how can we 
figure this out?

Dijkstra’s Algorithm

● Allows us to find the shortest path from a vertex v (the origin) to all other 
vertices that can be reached from v.

How?

● Maintain estimates of the shortest paths from the origin to every vertex (along 
with their costs)

● Gradually refine these estimates as we traverse the graph



Using our same graph as before, use Dijkstra’s shortest path algorithm to 
obtain the shortest paths starting from Cologne.
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B ∞

C 0

D ∞

F ∞

H ∞

M ∞

S ∞



Topological Sort

Recall:
● Used to order the vertices in a directed acyclic graph (a DAG).
● It is an ordering of the vertices such that, if there is directed edge from a to b, 

a comes before b.

 A  B

 C  D

 E

 F  G

Topological Sort
● S = a stack to hold the vertices
● while there are still unvisited 

vertices:
○ find a vertex v with no 

unvisited successors mark v 
as visited

○ S.push(v)
● return S



 A  B

 C  D

 E

 F  G

Push:

Stack:

*For the purpose of this section, tie-breaker will be what 
comes first alphabetically


