

Section 12

CSCI E-22

Will Begin Shortly

Graphs: Minimum Spanning Trees

Recall:

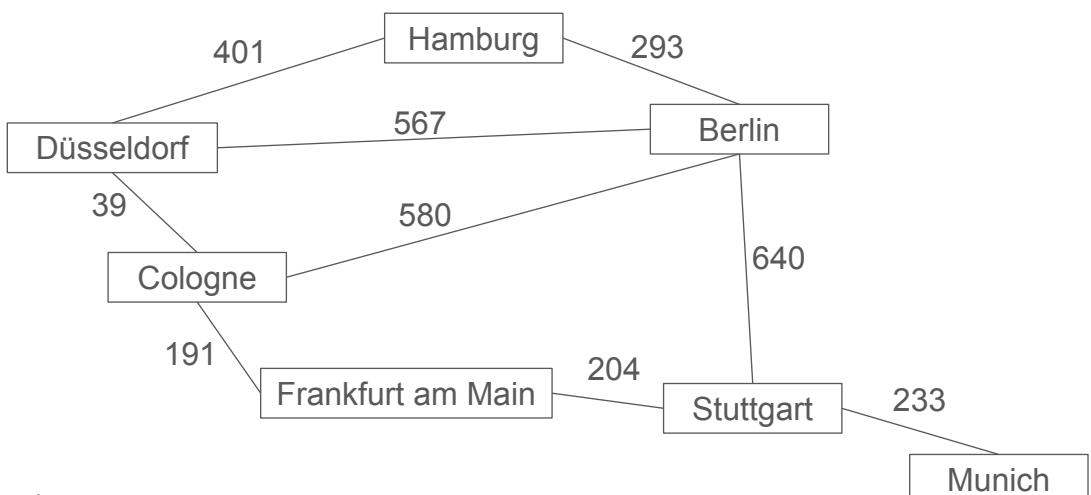
- A *minimum spanning tree* (MST) has the smallest total cost among all possible spanning trees.
 - If all edges have unique costs, there is only one MST. However, if some edges have the same cost, there may be more than one.

Graphs: Minimum Spanning Trees

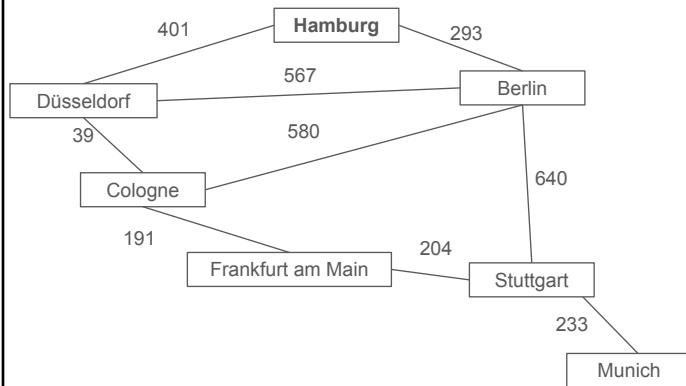
Recall:

- A *minimum spanning tree* (MST) has the smallest total cost among all possible spanning trees.
 - If all edges have unique costs, there is only one MST. However, if some edges have the same cost, there may be more than one.
- One way we can find a MST is **Prim's MST Algorithm**
 - Use sets A and B, starting with one vertex in set A and all others in set B
 - Select the lowest cost edge that connects set A to set B, and add it to the spanning tree
 - Move the newly connected vertex from set B to set A
 - Repeat

Consider the following weighted, undirected graph representing the distances from city to city by way of the Autobahn in Germany:



*not to scale



Edge Added	Set A	Set B

Remember:

- The MST is the spanning tree with the minimal *total* edge cost.
- It does not necessarily include the minimal cost path between a pair of vertices.

Remember:

- The MST is the spanning tree with the minimal *total* edge cost.
- It does not necessarily include the minimal cost path between a pair of vertices.

It can be helpful to know the shortest path from one vertex to another; how can we figure this out?

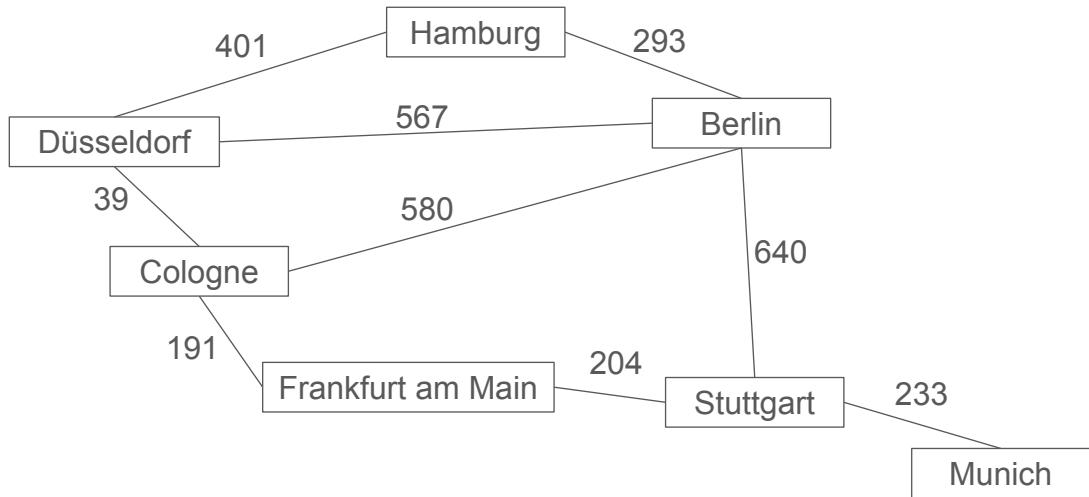
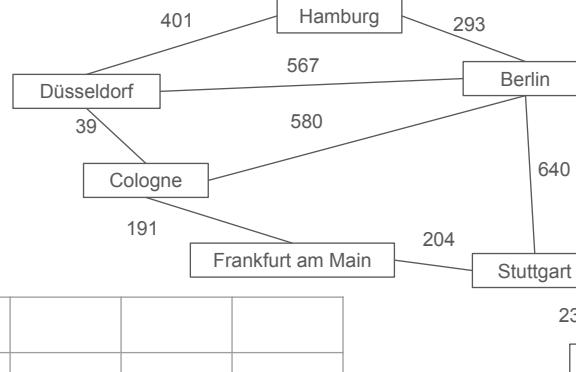
Dijkstra's Algorithm

- Allows us to find the shortest path from a vertex v (the origin) to all other vertices that can be reached from v .

How?

- Maintain estimates of the shortest paths from the origin to every vertex (along with their costs)
- Gradually refine these estimates as we traverse the graph

Using our same graph as before, use Dijkstra's shortest path algorithm to obtain the shortest paths starting from Cologne.

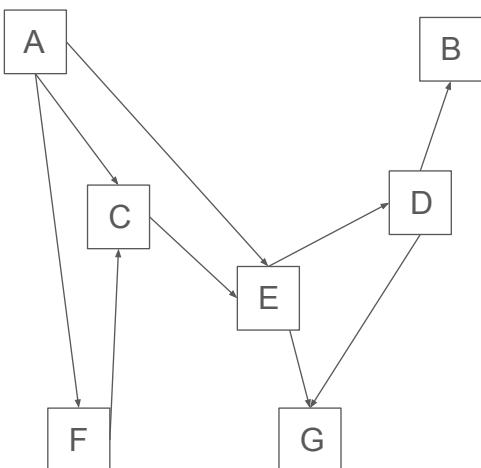


B	8						
C	0						
D	8						
F	8						
H	8						
M	8						
S	8						

Topological Sort

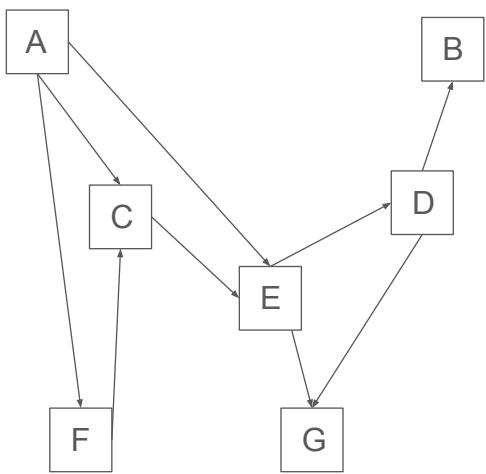
Recall:

- Used to order the vertices in a directed acyclic graph (a DAG).
- It is an ordering of the vertices such that, if there is directed edge from a to b, a comes before b.



Topological Sort

- S = a stack to hold the vertices
- while there are still unvisited vertices:
 - find a vertex v with no unvisited successors mark v as visited
 - $S.push(v)$
- return S



Push:

Stack:

*For the purpose of this section, tie-breaker will be what comes first alphabetically