
Section 2
CSCI E-22

Will Begin Shortly

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = _________________;

 ...

}

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = _________________;

 ...

}

removeCapitals("HeLLo")

 return "eo"

Recall: Recursive Problem Solving
When solving problems using recursion, we break the problem down into smaller
subproblems.

Once we have broken down the problem into the smallest subproblem (one that we can
solve), we have reached a base case.

Then, we can progressively build up the solutions to the subproblems until we have a
solution for the overall problem.

sum(n) = n + sum(n-1)

Recall: Recursive Problem Solving
When solving problems using recursion, we break the problem down into smaller
subproblems.

Once we have broken down the problem into the smallest subproblem (one that we can
solve), we have reached a base case.

Then, we can progressively build up the solutions to the subproblems until we have a
solution for the overall problem.

sum(n) = n + sum(n-1)

Recall: Recursive Problem Solving
When solving problems using recursion, we break the problem down into smaller
subproblems.

Once we have broken down the problem into the smallest subproblem (one that we can
solve), we have reached a base case.

Then, we can progressively build up the solutions to the subproblems until we have a
solution for the overall problem.

sum(n) = n + sum(n-1)

public static int sum(int n) {
 if (n <= 0)
 return 0;

 int rest = sum(n - 1);
 return n + rest;
}

Recall: Recursive Problem Solving
When solving problems using recursion, we break the problem down into smaller
subproblems.

Once we have broken down the problem into the smallest subproblem (one that we can
solve), we have reached a base case.

Then, we can progressively build up the solutions to the subproblems until we have a
solution for the overall problem.

sum(n) = n + sum(n-1)

public static int sum(int n) {
 if (n <= 0)
 return 0;

 int rest = sum(n - 1);
 return n + rest;
}

sum(4) = 4 + sum(3)
 sum(3) = 3 + sum(2)
 sum(2) = 2 + sum(1)
 sum(1) = 1 + sum(0)
 sum(0) = 0

Recall: Recursive Problem Solving
When solving problems using recursion, we break the problem down into smaller
subproblems.

Once we have broken down the problem into the smallest subproblem (one that we can
solve), we have reached a base case.

Then, we can progressively build up the solutions to the subproblems until we have a
solution for the overall problem.

sum(n) = n + sum(n-1)

public static int sum(int n) {
 if (n <= 0)
 return 0;

 int rest = sum(n - 1);
 return n + rest;
}

sum(4) = 4 + sum(3)
 sum(3) = 3 + sum(2)
 sum(2) = 2 + sum(1)
 sum(1) = 1 + sum(0)
 sum(0) = 0

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○

● What's the recursive subproblem?
○

● What work do we need to do before returning?

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = _________________;

 ...

}

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○

● What's the recursive subproblem?
○

● What work do we need to do before returning?

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○ When s is the empty string

● What's the recursive subproblem?
○

● What work do we need to do before returning?

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○ When s is the empty string

● What's the recursive subproblem?
○ Removing the capitals from the rest of the string

● What work do we need to do before returning?
● Test whether the first character in the string is a capital; if it is, it should not be included

in the return value

removeCapitals("HeLLo")

If we knew the solution to removeCapitals("eLLo"), we could solve
removeCapitals("HeLLo")

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○ When s is the empty string

● What's the recursive subproblem?
○ Removing the capitals from the rest of the string

● What work do we need to do before returning?
● Test whether the first character in the string is a capital; if it is, it should not be included

in the return value

removeCapitals("HeLLo") = H + removeCapitals("eLLo")

If we knew the solution to removeCapitals("eLLo"), we could solve
removeCapitals("HeLLo")

?

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○ When s is the empty string

● What's the recursive subproblem?
○ Removing the capitals from the rest of the string

● What work do we need to do before returning?
○ Test whether the first character in the string is a capital; if it is, it should not be

included in the return value

removeCapitals("HeLLo") = H + removeCapitals("eLLo")

If we knew the solution to removeCapitals("eLLo"), we could solve
removeCapitals("HeLLo")

?
"eo"

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○ When s is the empty string

● What's the recursive subproblem?
○ Removing the capitals from the rest of the string

● What work do we need to do before returning?
○ Test whether the first character in the string is a capital; if it is, it should not be

included in the return value

removeCapitals("HeLLo") = H + removeCapitals("eLLo")

If we knew the solution to removeCapitals("eLLo"), we could solve
removeCapitals("HeLLo")

?
"eo"

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○ When s is the empty string

● What's the recursive subproblem?
○ Removing the capitals from the rest of the string

● What work do we need to do before returning?
○ Test whether the first character in the string is a capital; if it is, it should not be

included in the return value

removeCapitals("HeLLo") = H + removeCapitals("eLLo")

If we knew the solution to removeCapitals("eLLo"), we could solve
removeCapitals("HeLLo")

?
"eo"

Recursive Problem Solving Approach
Before writing a recursive method, we can try to plan:

● What's the base case?
○ When s is the empty string

● What's the recursive subproblem?
○ Removing the capitals from the rest of the string

● What work do we need to do before returning?
○ Test whether the first character in the string is a capital; if it is, it should not be

included in the return value

removeCapitals("HeLLo") = H + removeCapitals("eLLo") = "eo"

If we knew the solution to removeCapitals("eLLo"), we could solve
removeCapitals("HeLLo")

?
"eo"

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = _________________;

 ...

}

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 ...

}

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (___________________)

}

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return _______________;

}

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return _______________;
}

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

removedFromRest

removeCapitals
S "LLo"

removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

removedFromRest

removeCapitals
S "LLo"

removedFromRest

removeCapitals
S "Lo"

removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

removedFromRest

removeCapitals
S "LLo"

removedFromRest

removeCapitals
S "Lo"

removedFromRest

removeCapitals
S "o"

removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

removedFromRest

removeCapitals
S "LLo"

removedFromRest

removeCapitals
S "Lo"

removedFromRest

removeCapitals
S "o"

removedFromRest

removeCapitals
S ""

removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

removedFromRest

removeCapitals
S "LLo"

removedFromRest

removeCapitals
S "Lo"

removedFromRest

removeCapitals
S "o"

""removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

removedFromRest

removeCapitals
S "LLo"

removedFromRest

removeCapitals
S "Lo"

"o"removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

removedFromRest

removeCapitals
S "LLo"

"o"removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

removedFromRest

removeCapitals
S "eLLo"

"o"removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

removeCapitals
S "HeLLo"

"eo"removedFromRest

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

How many calls of this
method are needed when…

n is 0?

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

How many calls of this
method are needed when…

n is 0? 1

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

How many calls of this
method are needed when…

n is 0? 1
n is 1?

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

How many calls of this
method are needed when…

n is 0? 1
n is 1? 2

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

How many calls of this
method are needed when…

n is 0? 1
n is 1? 2
n is 2? 3
n is 3? 4

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

How many calls of this
method are needed when…

n is 0? 1
n is 1? 2
n is 2? 3
n is 3? 4

What is the general formula for
the number of calls needed to
process a string of length n?

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

How many calls of this
method are needed when…

n is 0? 1
n is 1? 2
n is 2? 3
n is 3? 4

What is the general formula for
the number of calls needed to
process a string of length n?

n + 1

Practice with Recursion
The following Java method should use recursion to remove all capital letters from a string.
Some of the code has been omitted and we will need to fill it in:

public static String removeCapitals(String s) {
 if (s == null)
 throw new IllegalArgumentException();

 if (s.equals(""))
 return "";

 String removedFromRest = removeCapitals(s.substring(1));

 char first = s.charAt(0);
 if (first >= 'A' && first <= 'Z')
 return removedFromRest;
 else
 return first + removedFromRest;
}

How many calls of this
method are needed when…

n is 0? 1
n is 1? 2
n is 2? 3
n is 3? 4

What is the general formula for
the number of calls needed to
process a string of length n?

n + 1

Let's remember this while we
complete the next exercise

The Fibonacci Sequence
The Fibonacci sequence is a well-known number series in which each number in the series
is the sum of the two previous numbers.

We define the first two numbers as F0 = 0 and F1 = 1, and all successive numbers as:

Fn = Fn-1 + Fn-2

Since the sequence is defined recursively, using recursion to calculate Fibonacci numbers is
natural. Finish the code below to write an algorithm that calculates the nth Fibonacci number.

public static long fib(int n) {

 // base case
 if (_______________)

}

The Fibonacci Sequence
The Fibonacci sequence is a well-known number series in which each number in the series
is the sum of the two previous numbers.

We define the first two numbers as F0 = 0 and F1 = 1, and all successive numbers as:

Fn = Fn-1 + Fn-2

Since the sequence is defined recursively, using recursion to calculate Fibonacci numbers is
natural. Finish the code below to write an algorithm that calculates the nth Fibonacci number.

public static long fib(int n) {

 // base case
 if (n == 0 || n == 1)
 return _________;

}

The Fibonacci Sequence
The Fibonacci sequence is a well-known number series in which each number in the series
is the sum of the two previous numbers.

We define the first two numbers as F0 = 0 and F1 = 1, and all successive numbers as:

Fn = Fn-1 + Fn-2

Since the sequence is defined recursively, using recursion to calculate Fibonacci numbers is
natural. Finish the code below to write an algorithm that calculates the nth Fibonacci number.

public static long fib(int n) {

 // base case
 if (n == 0 || n == 1)
 return n;

}

The Fibonacci Sequence
The Fibonacci sequence is a well-known number series in which each number in the series
is the sum of the two previous numbers.

We define the first two numbers as F0 = 0 and F1 = 1, and all successive numbers as:

Fn = Fn-1 + Fn-2

Since the sequence is defined recursively, using recursion to calculate Fibonacci numbers is
natural. Finish the code below to write an algorithm that calculates the nth Fibonacci number.

public static long fib(int n) {

 // base case
 if (n == 0 || n == 1)
 return n;

 // recursive case
 return ____________________;

}

The Fibonacci Sequence
The Fibonacci sequence is a well-known number series in which each number in the series
is the sum of the two previous numbers.

We define the first two numbers as F0 = 0 and F1 = 1, and all successive numbers as:

Fn = Fn-1 + Fn-2

Since the sequence is defined recursively, using recursion to calculate Fibonacci numbers is
natural. Finish the code below to write an algorithm that calculates the nth Fibonacci number.

public static long fib(int n) {

 // base case
 if (n == 0 || n == 1)
 return n;

 // recursive case
 return fib(n - 1) + fib(n - 2);

}

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

fib(4)

fib(3) fib(2)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

fib(4)

fib(3) fib(2)

fib(2) fib(1)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

How many times did we call fib() to find the
fourth Fibonacci number? fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

How many times did we call fib() to find the
fourth Fibonacci number? 9 fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

How many times did we call fib() to find the
fourth Fibonacci number? 9

Do you see a problem with this? What if we
tried larger numbers, like 50?

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

How many times did we call fib() to find the
fourth Fibonacci number? 9

Do you see a problem with this? What if we
tried larger numbers, like 50?

● The number of calls increases exponentially
for the initial value of n. This means that we
would have to make about 10 billion method
calls to calculate fib(50)!

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

How many times did we call fib() to find the
fourth Fibonacci number? 9

Do you see a problem with this? What if we
tried larger numbers, like 50?

● The number of calls increases exponentially
for the initial value of n. This means that we
would have to make about 10 billion method
calls to calculate fib(50)!

How would you rewrite fib() to be more efficient,
either still as a recursive method or iteratively?

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

The Fibonacci Sequence
Draw a diagram that shows the number of times fib() is called with an initial value of 4. It
has been started for you:

How many times did we call fib() to find the
fourth Fibonacci number? 9

Do you see a problem with this? What if we
tried larger numbers, like 50?

● The number of calls increases exponentially
for the initial value of n. This means that we
would have to make about 10 billion method
calls to calculate fib(50)!

How would you rewrite fib() to be more efficient,
either still as a recursive method or iteratively?

● You need to keep track of the previous two
Fibonacci values while computing the next

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

The Fibonacci Sequence
Here is an example iterative solution:

public static long fib(int n) {

 if (n <= 0) {
 return 0;
 }

 long previous = 0; // at the start, previous = F_0
 long current = 1; // at the start, current = F_1

 for (int i = 2; i <= n; i++) {
 long tmp = previous + current;
 previous = current;
 current = tmp;
 }

 return current;
}

The Fibonacci Sequence
Here is an example recursive solution:

public static long fib(int n) {

 if (n == 0) {
 return 0;
 }

 return fibHelper(n, 1, 0);
}

public static long fibHelper(int n, long curr, long prev) {

 if (n == 1) {
 return curr;
 }

 return fibHelper(n - 1, curr + prev, curr);

}

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

This call to
findSolution() is
trying to place a value
in position n

In this problem, n
identifies the slot we're
trying to put a word in,
e.g. 5 down

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

The base case is when
a solution is found

In this problem, a
solution is found when
all 8 slots are filled

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

For all possible values that
can be put in positions

In this problem, the words
from the word list are the
values

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

isValid() checks whether the
current potential value can be
placed in the position

In this problem, what are the
constraints for whether a word
can be placed in a slot?

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

isValid() checks whether the
current potential value can be
placed in the position

In this problem, what are the
constraints for whether a word
can be placed in a slot?
1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

Add value to the board

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

Make a recursive call to move
on to next position (n+1) to try
to continue to fill board

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

Make a recursive call to move
on to next position (n+1) to try
to continue to fill board

There are two possibilities of
what happens next

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

(1) If we continue to place
values in positions until we find
a solution, we return true in
the base case and return true
all the way back through the
recursive call stack

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

(2) If we reach a position n that
we cannot fill -- because none
of the values are valid for that
position -- the for loop is
exhausted

We then return false. We
must backtrack!

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

(2) When we backtrack, the
recursive call returns false,
indicating that placing that
value on the board resulted in
an unsolvable state

We must remove the value
from the board and continue in
the for loop to try to place
other values

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

Notice that, in order to do a
sample run, we need to assign an
arbitrary order in which to assign
the spaces in the crossword
puzzle.

We use the following order for this
run: 1ACROSS, 2DOWN, 3DOWN,
4ACROSS, 7ACROSS, 5DOWN,
8ACROSS, 6DOWN.

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

1 across "aft"val

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

1 across "ale"val

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

1 across "eel"val

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

1 across "heel"val

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

1 across "hike"val

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

1 2 3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

1 across "hoses"val

1→ 2↓ 3↓

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

4 5

6 7

8

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

1→
H

O
2↓

S

E
3↓

S

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

4 5

6 7

8

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

1→
H

O
2↓

S

E
3↓

S

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

4 5

6 7

8

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

1→
H

O
2↓

S

E
3↓

S

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

4 5

6 7

8

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

"aft"val

1→
H

O
2↓

S

E
3↓

S

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

4 5

6 7

8

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

"ale"val

1→
H

O
2↓

S

E
3↓

S

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

4 5

6 7

8

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

"eel"val

1→
H

O
2↓

S

E
3↓

S

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

4 5

6 7

8

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

"sails"val

1→
H

O
2↓

S

E
3↓

S

4→ 5↓

6↓ 7→

8→

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A
4

I
5

6

L
7

8

S

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

"sails"val

1→
H

O
2↓

S

E
3↓

S

A

4→

I
5↓

6↓ 7→
L

8→

S

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A
4

I
5

6

L
7

8

S

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

3 down

1→
H

O
2↓

S

E
3↓

S

A

4→

I
5↓

6↓ 7→
L

8→

S

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A
4

I
5

6

L
7

8

S

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

3 down

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

"aft"val

1→
H

O
2↓

S

E
3↓

S

A

4→

I
5↓

6↓ 7→
L

8→

S

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A
4

I
5

6

L
7

8

S

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

3 down

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

"ale"val

1→
H

O
2↓

S

E
3↓

S

A

4→

I
5↓

6↓ 7→
L

8→

S

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H
4

I
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

3 down

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

"sheet"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

I
5↓

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H
4

I
5

E
6

L
7

E
8

S T

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

3 down "sheet"val

4 across

1→
H

O
2↓

S

E
3↓

S

A

H
4→

I
5↓

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

3 down "sheet"val

4 across

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

"hike"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

7 across

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S E T

L

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

5 down "keel"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E

E
8→

S

E

T

L

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S E T

L

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

5 down "keel"

8 across

val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E

E
8→

S

E

T

L

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S E T

L

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

5 down "keel"

8 across

val

No words are valid! Must backtrack

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E

E
8→

S

E

T

L

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S E T

L

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

5 down "keel"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E

E
8→

S

E

T

L

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

5 down

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E

E
8→

S

T

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

7 across "lee"val

5 down

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

5 down

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E

E
8→

S

T

No words are valid! Must backtrack

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "hike"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across

1→
H

O
2↓

S

E
3↓

S

A

H
4→

H

I
5↓

K

E
6↓ 7→

L

E
8→

S

T

No words are valid! Must backtrack

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

H
4

I K
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

"hike"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

I
5↓

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H
4

I
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

1→
H

O
2↓

S

E
3↓

S

A

H
4→

I
5↓

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

L
4

I N
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

"line"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

L

I
5↓

N

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

L
4

I N
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "line"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across

1→
H

O
2↓

S

E
3↓

S

A

H
4→

L

I
5↓

N

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

L
4

I N
5

E
6

L
7

E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "line"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across

Notice that, since
this is a fresh stack
frame for n == 7, we
start the loop over
from the beginning
again!

1→
H

O
2↓

S

E
3↓

S

A

H
4→

L

I
5↓

N

E
6↓ 7→

L

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

L
4

I N
5

E
6

L
7

E E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "line"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across

Notice that, since
this is a fresh stack
frame for n == 7, we
start the loop over
from the beginning
again!

"lee"val

1→
H

O
2↓

S

E
3↓

S

A

H
4→

L

I
5↓

N

E
6↓ 7→

L

E

E
8→

S

T

Recursive Backtracking
We consider another problem that can be solved with recursive backtracking. Given a list of
words that are to be filled into a crossword puzzle, how do we find a solution that satisfies
the rules of the conventional crossword?

H
1

O S
2

E S
3

A H

L
4

I N
5

E
6

L
7

E E
8

S T

1 across

1. Intersecting letters match
2. Must fit in slot (length)
3. Word not yet used

"hoses"val

2 down "sails"val

3 down "sheet"val

4 across "line"val

aft
ale
eel
heel
hike
hoses
keel
laser
lee
line
sails
sheet
steer
tie

boolean findSolution(n, other params) {
 if (we found a solution) {
 displaySolution();
 return true;
 }

 for (val = first to last) {
 if (isValid(val)) {
 applyValue(val);
 if (findSolution(n + 1, other params)) {
 return true;
 }
 removeValue(val);
 }
 }

 return false;
}

7 across "lee"val

And so on...

1→
H

O
2↓

S

E
3↓

S

A

H
4→

L

I
5↓

N

E
6↓ 7→

L

E

E
8→

S

T

