
Section 4
CSCI E-22

Will Begin Shortly

Merge sort
● Like quicksort, recursive divide & conquer
● Unlike quicksort, merge sort does not modify the array during the “division” 

phase of the algorithm
● Instead, sorting is done as subarrays are merged together into a fully sorted 

subarray
● merge() method takes two already sorted subarrays and merges them into a 

sorted whole



7 39 20 11 16 5 9 28

7 39 20 11

Merge sort
● What major advantage does merge sort have over quicksort with respect to 

time complexity?
○ Unlike quicksort, merge sort always divides the current subarray evenly in half, and so its call 

tree is always perfectly balanced, with height proportional to log2 n. Therefore, merge sort gives 
O(n ⋅ log2 n) performance even in the worst case, whereas quicksort can degenerate into O(n2) 
performance if it does not partition evenly and its call tree approaches a height of n.

● What major disadvantage does merge sort have compared to quicksort with 
respect to space complexity?

○ Merge sort requires O(n) additional memory on top of the array itself, while quicksort uses only 
O(1) additional memory.



Radix sort
● Stable, distributive sorting algorithm
● Can be used to sort integers, strings, complex data
● For integers, the algorithm processes individual digits of each element

○ For each element, place it into a “bucket” according to the value of its least significant digit, 
maintaining order in the bucket

○ When you reach the end of the array, repeat the process for the next most significant digit
○ Stop when all elements have been evaluated according to the most significant position of the 

largest element

41 326 18 1 117 56 86 7 14 221 19 30

0 1 2 3 4 5 6 7 8 9

first pass (buckets for the ones digit)



41 326 18 1 117 56 86 7 14 221 19 30

0 1 2 3 4 5 6 7 8 9

first pass (buckets for the ones digit)

0 1 2 3 4 5 6 7 8 9

second pass (buckets for the tens digit)

41 326 18
1

117
56
86

7
14

221

1930

41 326 18 1 117 56 86 7 14 221 19 30

0 1 2 3 4 5 6 7 8 9

first pass (buckets for the ones digit)

0 1 2 3 4 5 6 7 8 9

second pass (buckets for the tens digit)

0 1 2 3 4 5 6 7 8 9

third pass (buckets for the hundreds digit)

30 411 22114
326

56 86
1177
18
19



Radix sort
● Keeping in mind that radix sort processes its data as a sequence of m 

quantities with k possible values, what do m and k represent in our example?
○ In the example, m = 3, because there are 3 positions we’re looking at: the 1’s position, the 10’s 

position, and the 100’s position.
○ In general, if we have one bucket for each value of our given radix, m is equal to the positional 

index of the most significant digit of the largest element. Here, since we’re sorting integers in 
base 10, and we’ll have one bucket for each digit 0–9.

○ We can think of k as the number of buckets we have—that is, it represents the number of 
possible values we could have for each of m quantities. So, as we just mentioned, k = 10 in the 
above example, and in any case in which we’re using radix sort to sort integers by significant 
digit.

Radix sort
● How many operations did our example above require? How many operations 

would the example above have required if the elements were already in sorted 
order? If they were in reverse order?

○ In general radix sort takes n ⋅ m steps for an array with n elements, since it iterates over all n 
elements of the array a total of m times.

○ Our previous example required 12 ⋅ 3 = 36 steps. It would also require 36 steps if it had already 
been in sorted order, or reverse-sorted order. That is, the number of steps performed by radix 
sort is dependent only on the values of n and m, and not on the order of the original array.



Radix sort
● Which sorting method would have been more efficient for sorting the above 

array: radix sort or merge sort?
○ As discussed in lecture, radix sort is O(n ⋅ m) , whereas merge sort is O(n ⋅ log n) . So radix 

sort is more efficient than merge sort (and other comparison-based sorting algorithms in
O(n ⋅ log n) , such as quicksort) when m < log n.

○ Here, m = 3 and log2 n = 3.585…, so radix sort would sort the above example in fewer steps 
than merge sort.

‘h’

‘e’ ‘l’

‘l’ ‘o’ null

0x704

0xaf9 0x6c3

0x583 0x002

inputStr

temp

temp2

Specify how the following expressions evaluate:

● What is the value of temp.next?

● What does temp.next.ch evaluate to?

● What does inputStr.next.next == temp evaluate to?

● What are some ways we can access the character 'o'?

Practice with references



‘h’

‘e’ ‘l’

‘l’ ‘o’ null

0x704

0xaf9 0x6c3

0x583 0x002

inputStr

temp

temp2

How do the following statements change the diagram?

● temp.next = temp2

● temp = temp2.next.next

● inputStr = inputStr.next

● temp2 = null

Practice with references

End of section.

Questions?



Lecture 5
CSCI E-22

Will Begin Shortly


