
Section 5
CSCI E-22

Will Begin Shortly

‘h’inputStr

Tracing through StringNode.print()

‘e’ ‘l’ ‘l’ ‘o’ null

0x704 0xaf9 0x6c3 0x583 0x002

Let’s take a look at the execution of the StringNode.print() method where
the input list looks like this (the hexadecimal number next to each node is the
memory location of that node):

We want to draw a diagram which shows how the stack evolves with each subsequent
call, like we did on the written portion of Problem Set 1. The important things to track are
the output so far, and the address the current str variable holds in each frame.

Tracing through StringNode.print()

/*
 * Recursively process each node of
 * a linked list formed by
 * StringNodes, printing each one.
 */
public static void print(StringNode str)
{
 if (str == null) {
 return;
 } else {
 System.out.print(str.ch);
 print(str.next);
 }
} Output:

‘h’

More practice with variable expressions and references

‘e’ ‘l’

‘l’ ‘o’ null

0x704

0xaf9 0x6c3

0x583 0x002

inputStr

temp

temp2

Specify how the following expressions evaluate:

● What is the value of temp.next?

● What does temp.next.ch evaluate to?

● What does inputStr.next.next == temp evaluate to?

● What are some ways we can access the character 'o'?

‘h’

More practice with variable expressions and references

‘e’ ‘l’

‘l’ ‘o’ null

0x704

0xaf9 0x6c3

0x583 0x002

inputStr

temp

temp2

How do the following statements change the diagram?

● temp.next = temp2

● temp = temp2.next.next

● inputStr = inputStr.next

● temp2 = null

Converting a simple recursive method to an iterative one

/**
 * numOccurrences - find the number of
 * occurrences of the character ch in
 * the linked list to which str refers
 */
public static int numOccurrences(StringNode str, char ch) {
 if (str == null)
 return 0;

 int occurInRest = numOccurrences(str.next, ch);

 if (str.ch == ch)
 return 1 + occurInRest;
 else
 return occurInRest;
}

This is the recursive version
of the numOccurrences()
method which finds the
number of occurrences of a
specified character in our
linked list.

Converting a simple recursive method to an iterative one
public static int numOccurrences(StringNode str, char ch) {
 if (str == null)
 return 0;
 int occurInRest = numOccurrences(str.next, ch);
 if (str.ch == ch)
 return 1 + occurInRest;
 else
 return occurInRest;
}

We want to convert this method into an iterative one. Think back to our trace through the
StringNode.print() method. Do you see any similarities? What do you think the stack looks like
when this method is executed? What does it return?

Converting the StringNode.read() method

The read method takes an InputStream object, which can represent any input source which is processed
as a sequence of bytes (such as the System.in input stream which allows us to read from the keyboard, or
a file or network resource). The IOException isn’t important; it’s simply there in case the input stream goes
down when the method is executed. StringNode.read(System.in) will read any string the user enters
one character at a time and return a reference to a linked list which it constructs as the user types each
character. Here is the original, recursive read() method:

/**
 * read - reads a string from an input stream and returns a
 * reference to a linked list containing the characters in the string
 */
public static StringNode read(InputStream in) throws IOException {
 StringNode str;
 char ch = (char)in.read();

 if (ch == '\n') // base case
 str = null;
 else
 str = new StringNode(ch, read(in));

 return str;
}

Converting the StringNode.read() method

In what order does the read() method construct the linked list? Will this work as well in our
iterative implementation? Why or why not?

Converting the StringNode.read() method

public static StringNode read(InputStream in) throws IOException {
 StringNode str;
 char ch = (char)in.read();

 if (ch == '\n') // base case
 str = null;
 else
 str = new StringNode(ch, read(in));

 return str;
}

Clearly we’ll need a different strategy in the iterative implementation, since we’ll need to start at
the front of the list if we want to keep the input in the order in which it is read from the input
stream. How many pointers will we need if we want the iterative method to add new elements to
the back and then return the reference to the first node of the list?

