
Section 7
CSCI E-22

Will Begin Shortly

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…?

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…? We could try to take advantage of the fact that the list is sorted by using binary search!

What is the efficiency if we use binary search on the array implementation?

How about the linked list implementation?

What would be a better way to search if we knew we were using the linked list implementation?

Searching a list
However, implementing a linear search with an LLList is not as straightforward as it might seem. Let’s say that we are using an
instance of our LLList class in which the items are in sorted order, and that our search() method is external to the LLList class. Let’s
also assume that the objects in the LLList implement the Comparable interface.

Searching a list
Here’s our LLList search() method implemented using an iterator:

Because the iterator has a reference to the
underlying linked list, we can use it to iterate
over the internals of the LLList as if we had
that direct access!

In other words, with an iterator, we can perform
an O(n) search on a List implemented with any
underlying data structure.

Stacks
● A stack is a collection that follows the last-in, first-out (LIFO) rule.

○ push(item) is used to insert a new item at the top
○ pop() is the only way to remove an item, and it removes the topmost item
○ peek() is used to access the topmost item without popping it

Stacks
● A stack is a collection that follows the last-in, first-out (LIFO) rule.

○ push(item) is used to insert a new item at the top
○ pop() is the only way to remove an item, and it removes the topmost item
○ peek() is used to access the topmost item without popping it

● In lecture, we covered two implementations of the Stack interface:
ArrayStack and LLStack.
○ For both implementations, what is the time complexity of push(), pop(), and

peek()?

○ How do both implementations use memory?

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5

Balancing braces
● In lecture, we briefly mentioned an application for stacks that involves processing a

sequence of delimiters (parentheses, braces and brackets) to ensure they are balanced.
● A sequence of delimiters is balanced when every left delimiter has a matching right

delimiter in the correct order. For example:
○ {{{}}} is balanced because every opening delimiter has a closing delimiter and

there are no extra closing delimiters
○ { { { } { } { } } } is balanced (open brackets can come after closing brackets as long as

they are eventually closed)
○ { ( [ } ] ) is not balanced (mismatching delimiter types)
○ ( ( ((is not balanced (missing closing delimiters)
○) ) )) is not balanced (missing opening delimiters)

● Let’s write a method isBalanced() that takes a string containing delimiters and returns
true if the delimiters are balanced, and false otherwise.

