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How about the linked list implementation?

What would be a better way to search if we knew we were using the linked list implementation?

For the array implementation, our efficiency will be O(logn). 

Our efficiency drops to O(n * logn), since we may need to traverse the list, which is 
an O(n) operation on a linked list, in each of the O(logn) iterations of binary search.

Our standard linear search would be better. We’d simply traverse the linked list once, 
which would yield an O(n) efficiency.
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Here’s one way we could write our search() method with this framework: 

Notice any problems with this implementation?

It’s O(n2)! Every call to getItem() begins at the first 
node of the list and traverses the list until it reaches 
node i. 

Any ideas on how we could fix this?

Use an iterator! That way, our method will be able to 
complete its task using only a single pass of the 
underlying linked list.
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Searching a list
Here’s our LLList search()  method implemented using an iterator:

Because the iterator has a reference to the 
underlying linked list, we can use it to iterate 
over the internals of the  LLList as if we had 
that direct access! 

In other words, with an iterator, we can perform 
an O(n) search on a List implemented with any 
underlying data structure. 
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● In lecture, we covered two implementations of the Stack interface: 
ArrayStack and LLStack.
○ For both implementations, what is the time complexity of push(), pop(), and 

peek()?
■ The performance is O(1) for all operations in both implementations.
■ For ArrayStack, push() and pop() does array access & updating an integer.
■ For LLStack, push() and pop() involve modifying a few references.

○ How do both implementations use memory?
■ An array has a fixed size, and ArrayStack needs to allocate O(m) memory 

beforehand. A linked list only uses the amount of memory for its nodes.
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Stacks
● Suppose there are a number of push() and pop() calls to a stack. The 

numbers 1 through 8 will be pushed onto the stack in order, with zero or more 
pops after each push. When a number is popped, it is immediately printed. 
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5 possible
■ push 1, pop, push 2, pop, push 3, pop, push 4, pop, push 5, push 6, push 7, push 8, pop...

○ 1 3 6 8 7 5 4 2 possible
■ push 1, pop, push 2, push 3, pop, push 4, push 5, push 6, pop, push 7, push 8, pop...

○ 8 7 6 5 1 2 3 4 impossible
■ After 5 is printed, the stack looks like [1, 2, 3, 4  and the only operation we can do is 

pop 4 off the stack.
○ 3 5 4 2 8 7 1 6 impossible

■ The 1 cannot be popped before the 6.
push 1, push 2, push 3, pop, push 4, push 5, pop, pop, pop, push 6, push 7, push 8, pop, 
pop, !!!



Generics
● The Stack interface is generic, which means the items in the stack can be limited 

to a specific type in code and checked by the Java compiler.
○ Why is this a safer option than using Object everywhere?

If Stack weren’t generic, the following code would compile, but we can prove it will 
crash:

public interface Stack<T> {

   boolean push(T item);

   T pop();

   T peek();

   boolean isEmpty();

   boolean isFull();

}

Stack s = new ArrayStack(10);
s.push(1);
s.push(2);
s.push("three");

int sum = 0;
while (!s.isEmpty()) {
    int n = (int) s.pop();
    sum += n;
}

System.out.println(sum); crashes when string "three" is popped off the 
stack because it is not an int and cannot be 
added to sum

Generics
● With the generic Stack, the s.push("three") call no longer compiles.

Stack<Integer> s = new ArrayStack<>(10);
s.push(1);
s.push(2);
s.push("three");

int sum = 0;
while (!s.isEmpty()) {
    int n = (int) s.pop();
    sum += n;
}

System.out.println(sum);

error: incompatible types: String cannot be converted to Integer
    s.push("three");
           ^

fails to compile here



Generics
● Generics will not prevent all runtime errors. Here’s some code that will still 

crash at runtime:

○ Why does this crash?
See the pop() method in ArrayStack. If the stack is empty, this method returns null. The 
compiler-accepted line where the crash occurs is the int n = s.pop() assignment.
null is a valid value for an Integer variable (and any other reference type), but not for a 
primitive int, so a NullPointerException is thrown at runtime.

Stack<Integer> s = new ArrayStack<>(10);
int n = s.pop();
System.out.println(n);

Balancing braces
● In lecture, we briefly mentioned an application for stacks that involves processing a 

sequence of delimiters (parentheses, braces and brackets) to ensure they are balanced.
● A sequence of delimiters is balanced when every left delimiter has a matching right 

delimiter in the correct order. For example:
○ {{{}}} is balanced because every opening delimiter has a closing delimiter and 

there are no extra closing delimiters
○ { { { } { } { } } } is balanced (open brackets can come after closing brackets as long as 

they are eventually closed)
○ { ( [ } ] ) is not balanced (mismatching delimiter types)
○ ( ( ( ( is not balanced (missing closing delimiters)
○ ) ) ) ) is not balanced (missing opening delimiters)

● Let’s write a method isBalanced() that takes a string containing delimiters and returns 
true if the delimiters are balanced, and false otherwise.



...
for (int i = 0; i < s.length(); i++) {
    char c = s.charAt(i);

    if ("{[(".indexOf(c) >= 0) {
        stack.push(c);

    } else if ("}])".indexOf(c) >= 0) {
        if (stack.isEmpty()) {
            return false;
        }

        char stackChar = stack.pop();

        if (
            stackChar == '{' && c != '}' ||
            stackChar == '[' && c != ']' ||
            stackChar == '(' && c != ')'
        ) {
            return false;
        }
    }
}
...

when an open delimiter is seen, push it 
onto the stack

check that the close delimiter and the 
open delimiter (popped off the stack) are 
the same type


