
Section 7
CSCI E-22

Will Begin Shortly

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…?

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…? We could try to take advantage of the fact that the list is sorted by using binary search!

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…? We could try to take advantage of the fact that the list is sorted by using binary search!

What is the efficiency if we use binary search on the array implementation?

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…? We could try to take advantage of the fact that the list is sorted by using binary search!

What is the efficiency if we use binary search on the array implementation?

For the array implementation, our efficiency will be O(logn).

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…? We could try to take advantage of the fact that the list is sorted by using binary search!

What is the efficiency if we use binary search on the array implementation?

How about the linked list implementation?
For the array implementation, our efficiency will be O(logn).

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…? We could try to take advantage of the fact that the list is sorted by using binary search!

What is the efficiency if we use binary search on the array implementation?

How about the linked list implementation?
For the array implementation, our efficiency will be O(logn).

Our efficiency drops to O(n * logn), since we may need to traverse the list, which is
an O(n) operation on a linked list, in each of the O(logn) iterations of binary search.

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…? We could try to take advantage of the fact that the list is sorted by using binary search!

What is the efficiency if we use binary search on the array implementation?

How about the linked list implementation?

What would be a better way to search if we knew we were using the linked list implementation?

For the array implementation, our efficiency will be O(logn).

Our efficiency drops to O(n * logn), since we may need to traverse the list, which is
an O(n) operation on a linked list, in each of the O(logn) iterations of binary search.

Searching a list
Suppose we have a list of items in sorted order, in both the ArrayList implementation and the LLList implementation.

If we want to find a single item in the list, what can we do?

- We could make a linear pass through the list, checking whether each item in the list is the one we want.
- Or…? We could try to take advantage of the fact that the list is sorted by using binary search!

What is the efficiency if we use binary search on the array implementation?

How about the linked list implementation?

What would be a better way to search if we knew we were using the linked list implementation?

For the array implementation, our efficiency will be O(logn).

Our efficiency drops to O(n * logn), since we may need to traverse the list, which is
an O(n) operation on a linked list, in each of the O(logn) iterations of binary search.

Our standard linear search would be better. We’d simply traverse the linked list once,
which would yield an O(n) efficiency.

Searching a list
However, implementing a linear search with an LLList is not as straightforward as it might seem. Let’s say that we are using an
instance of our LLList class in which the items are in sorted order, and that our search() method is external to the LLList class. Let’s
also assume that the objects in the LLList implement the Comparable interface.

Searching a list
However, implementing a linear search with an LLList is not as straightforward as it might seem. Let’s say that we are using an
instance of our LLList class in which the items are in sorted order, and that our search() method is external to the LLList class. Let’s
also assume that the objects in the LLList implement the Comparable interface.

Remember, this means they must provide an
instance method compareTo() that allows two
objects to be compared (i.e., to determine which
object “comes before” another when sorting).

a.compareTo(b) returns a negative integer
when a comes before b, zero if they are equal,
and a positive integer when a comes after b

Searching a list
However, implementing a linear search with an LLList is not as straightforward as it might seem. Let’s say that we are using an
instance of our LLList class in which the items are in sorted order, and that our search() method is external to the LLList class. Let’s
also assume that the objects in the LLList implement the Comparable interface.

Here’s one way we could write our search() method with this framework:
Remember, this means they must provide an
instance method compareTo() that allows two
objects to be compared (i.e., to determine which
object “comes before” another when sorting).

a.compareTo(b) returns a negative integer
when a comes before b, zero if they are equal,
and a positive integer when a comes after b

Searching a list
However, implementing a linear search with an LLList is not as straightforward as it might seem. Let’s say that we are using an
instance of our LLList class in which the items are in sorted order, and that our search() method is external to the LLList class. Let’s
also assume that the objects in the LLList implement the Comparable interface.

Here’s one way we could write our search() method with this framework:

Notice any problems with this implementation?

Searching a list
However, implementing a linear search with an LLList is not as straightforward as it might seem. Let’s say that we are using an
instance of our LLList class in which the items are in sorted order, and that our search() method is external to the LLList class. Let’s
also assume that the objects in the LLList implement the Comparable interface.

Here’s one way we could write our search() method with this framework:

Notice any problems with this implementation?

It’s O(n2)! Every call to getItem() begins at the first
node of the list and traverses the list until it reaches
node i.

Searching a list
However, implementing a linear search with an LLList is not as straightforward as it might seem. Let’s say that we are using an
instance of our LLList class in which the items are in sorted order, and that our search() method is external to the LLList class. Let’s
also assume that the objects in the LLList implement the Comparable interface.

Here’s one way we could write our search() method with this framework:

Notice any problems with this implementation?

It’s O(n2)! Every call to getItem() begins at the first
node of the list and traverses the list until it reaches
node i.

Any ideas on how we could fix this?

Searching a list
However, implementing a linear search with an LLList is not as straightforward as it might seem. Let’s say that we are using an
instance of our LLList class in which the items are in sorted order, and that our search() method is external to the LLList class. Let’s
also assume that the objects in the LLList implement the Comparable interface.

Here’s one way we could write our search() method with this framework:

Notice any problems with this implementation?

It’s O(n2)! Every call to getItem() begins at the first
node of the list and traverses the list until it reaches
node i.

Any ideas on how we could fix this?

Use an iterator! That way, our method will be able to
complete its task using only a single pass of the
underlying linked list.

Searching a list
Here’s our LLList search() method implemented using an iterator:

Searching a list
Here’s our LLList search() method implemented using an iterator:

Because the iterator has a reference to the
underlying linked list, we can use it to iterate
over the internals of the LLList as if we had
that direct access!

In other words, with an iterator, we can perform
an O(n) search on a List implemented with any
underlying data structure.

Stacks
● A stack is a collection that follows the last-in, first-out (LIFO) rule.

○ push(item) is used to insert a new item at the top
○ pop() is the only way to remove an item, and it removes the topmost item
○ peek() is used to access the topmost item without popping it

Stacks
● A stack is a collection that follows the last-in, first-out (LIFO) rule.

○ push(item) is used to insert a new item at the top
○ pop() is the only way to remove an item, and it removes the topmost item
○ peek() is used to access the topmost item without popping it

● In lecture, we covered two implementations of the Stack interface:
ArrayStack and LLStack.
○ For both implementations, what is the time complexity of push(), pop(), and

peek()?

Stacks
● A stack is a collection that follows the last-in, first-out (LIFO) rule.

○ push(item) is used to insert a new item at the top
○ pop() is the only way to remove an item, and it removes the topmost item
○ peek() is used to access the topmost item without popping it

● In lecture, we covered two implementations of the Stack interface:
ArrayStack and LLStack.
○ For both implementations, what is the time complexity of push(), pop(), and

peek()?
■ The performance is O(1) for all operations in both implementations.
■ For ArrayStack, push() and pop() does array access & updating an integer.
■ For LLStack, push() and pop() involve modifying a few references.

Stacks
● A stack is a collection that follows the last-in, first-out (LIFO) rule.

○ push(item) is used to insert a new item at the top
○ pop() is the only way to remove an item, and it removes the topmost item
○ peek() is used to access the topmost item without popping it

● In lecture, we covered two implementations of the Stack interface:
ArrayStack and LLStack.
○ For both implementations, what is the time complexity of push(), pop(), and

peek()?
■ The performance is O(1) for all operations in both implementations.
■ For ArrayStack, push() and pop() does array access & updating an integer.
■ For LLStack, push() and pop() involve modifying a few references.

○ How do both implementations use memory?

Stacks
● A stack is a collection that follows the last-in, first-out (LIFO) rule.

○ push(item) is used to insert a new item at the top
○ pop() is the only way to remove an item, and it removes the topmost item
○ peek() is used to access the topmost item without popping it

● In lecture, we covered two implementations of the Stack interface:
ArrayStack and LLStack.
○ For both implementations, what is the time complexity of push(), pop(), and

peek()?
■ The performance is O(1) for all operations in both implementations.
■ For ArrayStack, push() and pop() does array access & updating an integer.
■ For LLStack, push() and pop() involve modifying a few references.

○ How do both implementations use memory?
■ An array has a fixed size, and ArrayStack needs to allocate O(m) memory

beforehand. A linked list only uses the amount of memory for its nodes.

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5 possible
■ push 1, pop, push 2, pop, push 3, pop, push 4, pop, push 5, push 6, push 7, push 8, pop...

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5 possible
■ push 1, pop, push 2, pop, push 3, pop, push 4, pop, push 5, push 6, push 7, push 8, pop...

○ 1 3 6 8 7 5 4 2

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5 possible
■ push 1, pop, push 2, pop, push 3, pop, push 4, pop, push 5, push 6, push 7, push 8, pop...

○ 1 3 6 8 7 5 4 2 possible
■ push 1, pop, push 2, push 3, pop, push 4, push 5, push 6, pop, push 7, push 8, pop...

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5 possible
■ push 1, pop, push 2, pop, push 3, pop, push 4, pop, push 5, push 6, push 7, push 8, pop...

○ 1 3 6 8 7 5 4 2 possible
■ push 1, pop, push 2, push 3, pop, push 4, push 5, push 6, pop, push 7, push 8, pop...

○ 8 7 6 5 1 2 3 4

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5 possible
■ push 1, pop, push 2, pop, push 3, pop, push 4, pop, push 5, push 6, push 7, push 8, pop...

○ 1 3 6 8 7 5 4 2 possible
■ push 1, pop, push 2, push 3, pop, push 4, push 5, push 6, pop, push 7, push 8, pop...

○ 8 7 6 5 1 2 3 4 impossible
■ After 5 is printed, the stack looks like [1, 2, 3, 4 and the only operation we can do is

pop 4 off the stack.

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5 possible
■ push 1, pop, push 2, pop, push 3, pop, push 4, pop, push 5, push 6, push 7, push 8, pop...

○ 1 3 6 8 7 5 4 2 possible
■ push 1, pop, push 2, push 3, pop, push 4, push 5, push 6, pop, push 7, push 8, pop...

○ 8 7 6 5 1 2 3 4 impossible
■ After 5 is printed, the stack looks like [1, 2, 3, 4 and the only operation we can do is

pop 4 off the stack.
○ 3 5 4 2 8 7 1 6

Stacks
● Suppose there are a number of push() and pop() calls to a stack. The

numbers 1 through 8 will be pushed onto the stack in order, with zero or more
pops after each push. When a number is popped, it is immediately printed.
Which of the following outputs are impossible?

○ 1 2 3 4 8 7 6 5 possible
■ push 1, pop, push 2, pop, push 3, pop, push 4, pop, push 5, push 6, push 7, push 8, pop...

○ 1 3 6 8 7 5 4 2 possible
■ push 1, pop, push 2, push 3, pop, push 4, push 5, push 6, pop, push 7, push 8, pop...

○ 8 7 6 5 1 2 3 4 impossible
■ After 5 is printed, the stack looks like [1, 2, 3, 4 and the only operation we can do is

pop 4 off the stack.
○ 3 5 4 2 8 7 1 6 impossible

■ The 1 cannot be popped before the 6.
push 1, push 2, push 3, pop, push 4, push 5, pop, pop, pop, push 6, push 7, push 8, pop,
pop, !!!

Generics
● The Stack interface is generic, which means the items in the stack can be limited

to a specific type in code and checked by the Java compiler.
○ Why is this a safer option than using Object everywhere?

If Stack weren’t generic, the following code would compile, but we can prove it will
crash:

public interface Stack<T> {

 boolean push(T item);

 T pop();

 T peek();

 boolean isEmpty();

 boolean isFull();

}

Stack s = new ArrayStack(10);
s.push(1);
s.push(2);
s.push("three");

int sum = 0;
while (!s.isEmpty()) {
 int n = (int) s.pop();
 sum += n;
}

System.out.println(sum); crashes when string "three" is popped off the
stack because it is not an int and cannot be
added to sum

Generics
● With the generic Stack, the s.push("three") call no longer compiles.

Stack<Integer> s = new ArrayStack<>(10);
s.push(1);
s.push(2);
s.push("three");

int sum = 0;
while (!s.isEmpty()) {
 int n = (int) s.pop();
 sum += n;
}

System.out.println(sum);

error: incompatible types: String cannot be converted to Integer
 s.push("three");
 ^

fails to compile here

Generics
● Generics will not prevent all runtime errors. Here’s some code that will still

crash at runtime:

○ Why does this crash?
See the pop() method in ArrayStack. If the stack is empty, this method returns null. The
compiler-accepted line where the crash occurs is the int n = s.pop() assignment.
null is a valid value for an Integer variable (and any other reference type), but not for a
primitive int, so a NullPointerException is thrown at runtime.

Stack<Integer> s = new ArrayStack<>(10);
int n = s.pop();
System.out.println(n);

Balancing braces
● In lecture, we briefly mentioned an application for stacks that involves processing a

sequence of delimiters (parentheses, braces and brackets) to ensure they are balanced.
● A sequence of delimiters is balanced when every left delimiter has a matching right

delimiter in the correct order. For example:
○ {{{}}} is balanced because every opening delimiter has a closing delimiter and

there are no extra closing delimiters
○ { { { } { } { } } } is balanced (open brackets can come after closing brackets as long as

they are eventually closed)
○ { ( [ } ] ) is not balanced (mismatching delimiter types)
○ ( ( ((is not balanced (missing closing delimiters)
○) ) )) is not balanced (missing opening delimiters)

● Let’s write a method isBalanced() that takes a string containing delimiters and returns
true if the delimiters are balanced, and false otherwise.

...
for (int i = 0; i < s.length(); i++) {
 char c = s.charAt(i);

 if ("{[(".indexOf(c) >= 0) {
 stack.push(c);

 } else if ("}])".indexOf(c) >= 0) {
 if (stack.isEmpty()) {
 return false;
 }

 char stackChar = stack.pop();

 if (
 stackChar == '{' && c != '}' ||
 stackChar == '[' && c != ']' ||
 stackChar == '(' && c != ')'
) {
 return false;
 }
 }
}
...

when an open delimiter is seen, push it
onto the stack

check that the close delimiter and the
open delimiter (popped off the stack) are
the same type

