
Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h?
2. What are the descendants of node c?
3. What is the depth of node i ?
4. What is the height of this tree?

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if an in-order traversal is made?

inorder(node) {
 inorder(node.left)
 print(node.key)
 inorder(node.right)
}

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a level-order traversal is made?

Iterators for linked lists null 5 23 4

nums

public class LLList ... {
 private class Node {
 private Object item;
 private Node next;
 }

 private class LLListIterator ... {
 private Node nextNode;

 public LLListIterator() {
 nextNode = head.next;
 }

 public boolean hasNext() {
 return nextNode != null;
 }

 public Object next() {
 Object item = nextNode.item;
 nextNode = nextNode.next;
 return item;
 }
 }
}

iter

int[] numsArray = {5, 23, 4};
LLList nums = new LLList(numsArray);

ListIterator iter = nums.iterator();
System.out.println("printing all items...");

while (iter.hasNext()) {
 Object item = iter.next();
 System.out.println(item);
}

Iterators for binary trees
● Just like linked list iterators, binary tree iterators give consecutive access to

values in nodes
● Binary tree iterators should satisfy the following interface:

public interface LinkedTreeIterator {
 boolean hasNext();
 int next(); // assume tree stores integers
}

● Depending on the traversal, we will write a class that implements
LinkedTreeIterator and express the logic of the traversal in three places:
constructor, hasNext() and next()

● Like LLList, we implement the iterator as a private inner class

Iterators for binary trees

public class LinkedTree ... {
 private Node root;

 private class PreorderIterator ... {
 private Node nextNode;

 public PreorderIterator() {
 nextNode = ???
 }

 public boolean hasNext() {
 return nextNode != null;
 }

 public int next() {
 ???
 }
 }
}

15

12 18

6 14

21

25

10

9

● Start by copying nextNode and the hasNext() code from the linked list iterator
● When an iterator is constructed, what node should nextNode point to?

○ In other words, which node is visited first in a pre-order traversal?

?nextNode

root

LinkedTree

LinkedTreeIterator

Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
 private Node nextNode;

 public int next() {

 }
}

15

12 18

6 14

21

25

10

9

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable

for the key of the 15 node, then make nextNode point to the 12 node

nextNode

Iterators for binary trees: parent references
● To enable our binary tree iterator to reach all nodes starting from any node, we

can add a parent reference to the inner Node class
● The methods of the LinkedTree class must be changed to properly update

the parent reference (e.g., when inserting a node)

15

12 18

6 14

21

25

10

9

private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 private Node parent;
 ...
}

Iterators for binary trees: improving next()
public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {

 }

 return toReturn;
}

15

12 18

6

21

25

1010

9

14

Huffman encoding
● We are given a document where all characters are

drawn from a set of 6 characters, with the
frequencies shown here

● Let’s create a Huffman tree from this table of
frequencies and then use it to decode a binary
string

● To create a Huffman tree, create nodes for each
character, then, keeping the nodes in sorted order,
repeatedly combining the two lowest-frequency
nodes into a subtree

character frequency

e 45

a 33

r 20

i 18

n 15

d 10

Huffman encoding
character frequency

e 45

a 33

r 20

i 18

n 15

d 10

Huffman encoding
● Let’s use the tree to decode the

following binary string:

00101000100101

