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public class LinkedTree {
  private class Node {
    private int key;
    private LLList data;
    private Node left;
    private Node right;
    ...
  }

  private Node root;

  ...
}

1. What are the ancestors of node h?
2. What are the descendants of node c?
3. What is the depth of node i ?
4. What is the height of this tree?
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public class LinkedTree {
  private class Node {
    private int key;
    private LLList data;
    private Node left;
    private Node right;
    ...
  }

  private Node root;

  ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c?
3. What is the depth of node i ?
4. What is the height of this tree?
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public class LinkedTree {
  private class Node {
    private int key;
    private LLList data;
    private Node left;
    private Node right;
    ...
  }

  private Node root;

  ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c? f, g, & i
3. What is the depth of node i ? 3, since the path from the root contains 3 links
4. What is the height of this tree?
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public class LinkedTree {
  private class Node {
    private int key;
    private LLList data;
    private Node left;
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    ...
  }

  private Node root;

  ...
}
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public class LinkedTree {
  private class Node {
    private int key;
    private LLList data;
    private Node left;
    private Node right;
    ...
  }

  private Node root;

  ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c? f, g, & i
3. What is the depth of node i ? 3, since the path from the root contains 3 links
4. What is the height of this tree? 4, since j is deepest and its depth is 4
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b

preorder(b)
preorder(a)
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
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  preorder(node.left)
  preorder(node.right)
}
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preorder(b)
preorder(a)



Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d

preorder(d)
preorder(b)
preorder(a)
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d

preorder(d)
preorder(b)
preorder(a)

no left child! 
do nothing
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d

preorder(d)
preorder(b)
preorder(a)

no right child! 
do nothing
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d

preorder(d)
preorder(b)
preorder(a)

return
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d

preorder(b)
preorder(a)
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e

preorder(e)
preorder(b)
preorder(a)
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?
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  preorder(node.left)
  preorder(node.right)
}
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h

preorder(h)
preorder(e)
preorder(b)
preorder(a)
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h

preorder(h)
preorder(e)
preorder(b)
preorder(a)
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h  j

preorder(j)
preorder(h)
preorder(e)
preorder(b)
preorder(a)
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h  j

preorder(j)
preorder(h)
preorder(e)
preorder(b)
preorder(a)

return

no children
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h  j

preorder(h)
preorder(e)
preorder(b)
preorder(a)

return
no right child
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h  j

preorder(e)
preorder(b)
preorder(a)

return

no right child
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h  j

preorder(b)
preorder(a)

return

no more 
work to do
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h  j

preorder(a)

you do the rest—what’s the output 
for a pre-order traversal on this 
subtree?
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
  print(node.key)
  preorder(node.left)
  preorder(node.right)
}

a  b  d  e  h  j  c  f  i  g
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  h  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  h  e  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  h  e  b  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  h  e  b  i  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  h  e  b  i  f  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  h  e  b  i  f  g  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  h  e  b  i  f  g  c  
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
  postorder(node.left)
  postorder(node.right)
  print(node.key)
}

d  j  h  e  b  i  f  g  c  a

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if an in-order traversal is made?

inorder(node) {
  inorder(node.left)
  print(node.key)
  inorder(node.right)
}
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if an in-order traversal is made?

d  b  j  h  e  a  f  i  c  g

inorder(node) {
  inorder(node.left)
  print(node.key)
  inorder(node.right)
}
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a level-order traversal is made?
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● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a level-order traversal is made?

a  b  c  d  e  f  g  h  i  j

Iterators for linked lists null 5 23 4

nums

public class LLList ... {
  private class Node {
    private Object item;
    private Node next;
  }
  
  private class LLListIterator ... {
    private Node nextNode;

    public LLListIterator() {
      nextNode = head.next;
    }

    public boolean hasNext() {
      return nextNode != null;
    }

    public Object next() {
      Object item = nextNode.item;
      nextNode = nextNode.next;
      return item;
    }
  }
}

iter

int[] numsArray = {5, 23, 4};
LLList nums = new LLList(numsArray);

ListIterator iter = nums.iterator();
System.out.println("printing all items...");

while (iter.hasNext()) {
  Object item = iter.next();
  System.out.println(item);
}

for the linked list 
iterator, we kept track 
of the next node with 
a reference



Iterators for linked lists

nums

public class LLList ... {
  private class Node {
    private Object item;
    private Node next;
  }
  
  private class LLListIterator ... {
    private Node nextNode;

    public LLListIterator() {
      nextNode = head.next;
    }

    public boolean hasNext() {
      return nextNode != null;
    }

    public Object next() {
      Object item = nextNode.item;
      nextNode = nextNode.next;
      return item;
    }
  }
}

iter

when the iterator is 
constructed, the 
nextNode reference 
is set to the front of 
the list

skip over dummy head node of linked list

int[] numsArray = {5, 23, 4};
LLList nums = new LLList(numsArray);

ListIterator iter = nums.iterator();
System.out.println("printing all items...");

while (iter.hasNext()) {
  Object item = iter.next();
  System.out.println(item);
}

null 5 23 4

nums

public class LLList ... {
  private class Node {
    private Object item;
    private Node next;
  }

  private class LLListIterator ... {
    private Node nextNode;

    public LLListIterator() {
      nextNode = head.next;
    }

    public boolean hasNext() {
      return nextNode != null;
    }

    public Object next() {
      Object item = nextNode.item;
      nextNode = nextNode.next;
      return item;
    }
  }
}

iter next() updates our 
reference, but not before 
saving the item for 
returning

int[] numsArray = {5, 23, 4};
LLList nums = new LLList(numsArray);

ListIterator iter = nums.iterator();
System.out.println("printing all items...");

while (iter.hasNext()) {
  Object item = iter.next();
  System.out.println(item);
}

null 5 23 4



Iterators for binary trees
● Just like linked list iterators, binary tree iterators give consecutive access to 

values in nodes
● Binary tree iterators should satisfy the following interface:

public interface LinkedTreeIterator {
  boolean hasNext();
  int next();         // assume tree stores integers
}

● Depending on the traversal, we will write a class that implements 
LinkedTreeIterator and express the logic of the traversal in three places: 
constructor, hasNext() and next()

● Like LLList, we implement the iterator as a private inner class

Iterators for binary trees

public class LinkedTree ... {
  private Node root;

  private class PreorderIterator ... {
    private Node nextNode;

    public PreorderIterator() {
      nextNode = ???
    }

    public boolean hasNext() {
      return nextNode != null;
    }

    public int next() {
      ???
    }
  }
}
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6 14
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9

● Start by copying nextNode and the hasNext() code from the linked list iterator
● When an iterator is constructed, what node should nextNode point to?

○ In other words, which node is visited first in a pre-order traversal?

?nextNode

root

LinkedTree

LinkedTreeIterator



Iterators for binary trees

public class LinkedTree ... {
  private Node root;

  private class PreorderIterator ... {
    private Node nextNode;

    public PreorderIterator() {
      nextNode = root;
    }

    public boolean hasNext() {
      return nextNode != null;
    }

    public int next() {
      ???
    }
  }
}

15

12 18

6 14

21

25

10

9

● Start by copying nextNode and the hasNext() code from the linked list iterator
● When an iterator is constructed, what node should nextNode point to? root of the tree

○ In other words, which node is visited first in a pre-order traversal? here, the 15 node

nextNode

root

LinkedTree

LinkedTreeIterator

Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
  private Node nextNode;

  public int next() {
     
    ???

  }
}

15

12 18

6 14

21

25

10

9

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable 

for the key of the 15 node, then make nextNode point to the 12 node

nextNode



Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
  private Node nextNode;

  public int next() {
    int toReturn = nextNode.key;
    nextNode = nextNode.left;
    return toReturn;
  }
}
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● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable 

for the key of the 15 node, then make nextNode point to the 12 node

nextNode

Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
  private Node nextNode;

  public int next() {
    int toReturn = nextNode.key;
    nextNode = nextNode.left;
    return toReturn;
  }
}
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● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable 

for the key of the 15 node, then make nextNode point to the 12 node

nextNode



Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
  private Node nextNode;

  public int next() {
    int toReturn = nextNode.key;
    nextNode = nextNode.left;
    return toReturn;
  }
}

15

12 18

6 14

21
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9

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable 

for the key of the 15 node, then make nextNode point to the 12 node

● This works for the first call to next(), but it is clear we 
need more cases—what should next() do when 
nextNode points to the 6 node?

nextNode

Iterators for binary trees: the first call to next()

15

12 18

6 14

21

25

10

9

● This works for the first call to next(), but it is clear we 
need more cases—what should next() do when 
nextNode points to the 6 node?
Since the 6 node has no left child, it should set 
nextNode to nextNode.right

private class PreorderIterator ... {
  private Node nextNode;

  public int next() {
    int toReturn = nextNode.key;
    nextNode = nextNode.left;
    return toReturn;
  }
}

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable 

for the key of the 15 node, then make nextNode point to the 12 node

nextNode



Iterators for binary trees: improving next()
public int next() {
  int toReturn = nextNode.key;

  if (nextNode.left != null) {
    nextNode = nextNode.left;
  } else if (nextNode.right != null) {
    nextNode = nextNode.right;
  } else {
    ???
  }

  return toReturn;
}

15
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What happens when we update nextNode to point to the 
9 node? Where should nextNode point to next?



Iterators for binary trees: improving next()
public int next() {
  int toReturn = nextNode.key;

  if (nextNode.left != null) {
    nextNode = nextNode.left;
  } else if (nextNode.right != null) {
    nextNode = nextNode.right;
  } else {
    ???
  }

  return toReturn;
}
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nextNode

What happens when we update nextNode to point to the 
9 node? Where should nextNode point to next?

We will need a way to get from the 9 node up to
the 14 node, the next key in the pre-order traversal!

need to get
here

Pre-order traversal
15    12    6    10    9    14    18    25    21

Iterators for binary trees: parent references
● To enable our binary tree iterator to reach all nodes starting from any node, we 

can add a parent reference to the inner Node class
● The methods of the LinkedTree class must be changed to properly update 

the parent reference (e.g., when inserting a node)

15

12 18

6 14

21

25

10

9

private class Node {
  private int key;
  private LLList data;
  private Node left;
  private Node right;
  private Node parent;
  ...
}



Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to 

reach a node above us in the tree with a right child we have not visited yet
● We may need to traverse more than one parent reference to get to the node 

whose key is the next one in the pre-order traversal
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Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to 

reach a node above us in the tree with a right child we have not visited yet
● We may need to traverse more than one parent reference to get to the node 

whose key is the next one in the pre-order traversal
● Here’s one attempt:
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need to get
here

Node p = nextNode.parent;

while (p != null && p.right == null) {
  p = p.parent;
}

if (p == null) {
  nextNode = null;
} else {
  nextNode = p.right;
}
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Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to 

reach a node above us in the tree with a right child we have not visited yet
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whose key is the next one in the pre-order traversal
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going up the tree via parent 
references, find the first 
parent with a right child
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Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to 

reach a node above us in the tree with a right child we have not visited yet
● We may need to traverse more than one parent reference to get to the node 

whose key is the next one in the pre-order traversal
● Here’s one attempt:
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need to get
here

Node p = nextNode.parent;

while (p != null && p.right == null) {
  p = p.parent;
}

if (p == null) {
  nextNode = null;
} else {
  nextNode = p.right;
}

going up the tree via parent 
references, find the first 
parent with a right child

p

this will not work! it finds the 10 node 
instead of the 14 node

we need to find unvisited right children
nextNode
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need to get
here

public int next() {
  int toReturn = nextNode.key;

  if (nextNode.left != null) {
      nextNode = nextNode.left;
  } else if (nextNode.right != null) {
      nextNode = nextNode.right;
  } else {
      Node p = nextNode.parent;
      Node c = nextNode;

      while (p != null && p.right == null || p.right == c) {
          c = p;
          p = p.parent;
      }

      if (p == null) {
          nextNode = null;
      } else { 
          nextNode = p.right;
      }
  }

  return toReturn;
}

● Use two references: one to the 
parent, and one “behind”

● Allows us to find right children 
we have not already visited

● Stop the loop on the first 
ancestor whose right child is 
not on our path to the root



15

12 18

6 14

21

25

10

9
nextNode

need to get
here

public int next() {
  int toReturn = nextNode.key;

  if (nextNode.left != null) {
      nextNode = nextNode.left;
  } else if (nextNode.right != null) {
      nextNode = nextNode.right;
  } else {
      Node p = nextNode.parent;
      Node c = nextNode;

      while (p != null && p.right == null || p.right == c) {
          c = p;
          p = p.parent;
      }

      if (p == null) {
          nextNode = null;
      } else { 
          nextNode = p.right;
      }
  }

  return toReturn;
}

● Use two references: one to the 
parent, and one “behind”

● Allows us to find right children 
we have not already visited

● Stop the loop on the first 
ancestor whose right child is 
not on our path to the root

15

12 18

6 14

21

25

10

9
nextNode

public int next() {
  int toReturn = nextNode.key;
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parent, and one “behind”
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Huffman encoding
● We are given a document where all characters are 

drawn from a set of 6 characters, with the 
frequencies shown here

● Let’s create a Huffman tree from this table of 
frequencies and then use it to decode a binary 
string

● To create a Huffman tree, create nodes for each 
character, then, keeping the nodes in sorted order, 
repeatedly combining the two lowest-frequency 
nodes into a subtree
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● Let’s use the tree to decode the 
following binary string:
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