
Section 8
CSCI E-22

Will Begin Shortly

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h?
2. What are the descendants of node c?
3. What is the depth of node i ?
4. What is the height of this tree?

Binary trees

1. What are the ancestors of node h?
2. What are the descendants of node c?
3. What is the depth of node i ?
4. What is the height of this tree?

a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h?
2. What are the descendants of node c?
3. What is the depth of node i ?
4. What is the height of this tree?

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c?
3. What is the depth of node i ?
4. What is the height of this tree?

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c?
3. What is the depth of node i ?
4. What is the height of this tree?

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c? f, g, & i
3. What is the depth of node i ?
4. What is the height of this tree?

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c? f, g, & i
3. What is the depth of node i ?
4. What is the height of this tree?

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c? f, g, & i
3. What is the depth of node i ? 3, since the path from the root contains 3 links
4. What is the height of this tree?

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c? f, g, & i
3. What is the depth of node i ? 3, since the path from the root contains 3 links
4. What is the height of this tree?

Binary trees
a

b c

d e f g

h

j

i

public class LinkedTree {
 private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 ...
 }

 private Node root;

 ...
}

1. What are the ancestors of node h? e, b, & a
2. What are the descendants of node c? f, g, & i
3. What is the depth of node i ? 3, since the path from the root contains 3 links
4. What is the height of this tree? 4, since j is deepest and its depth is 4

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a

preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a

preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b

preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b

preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d

preorder(d)
preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d

preorder(d)
preorder(b)
preorder(a)

no left child!
do nothing

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d

preorder(d)
preorder(b)
preorder(a)

no right child!
do nothing

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d

preorder(d)
preorder(b)
preorder(a)

return

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d

preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e

preorder(e)
preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e

preorder(e)
preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h

preorder(h)
preorder(e)
preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h

preorder(h)
preorder(e)
preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h j

preorder(j)
preorder(h)
preorder(e)
preorder(b)
preorder(a)

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h j

preorder(j)
preorder(h)
preorder(e)
preorder(b)
preorder(a)

return

no children

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h j

preorder(h)
preorder(e)
preorder(b)
preorder(a)

return
no right child

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h j

preorder(e)
preorder(b)
preorder(a)

return

no right child

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h j

preorder(b)
preorder(a)

return

no more
work to do

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h j

preorder(a)

you do the rest—what’s the output
for a pre-order traversal on this
subtree?

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a pre-order traversal is made?

preorder(node) {
 print(node.key)
 preorder(node.left)
 preorder(node.right)
}

a b d e h j c f i g

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j h

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j h e

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j h e b

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j h e b i

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j h e b i f

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j h e b i f g

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j h e b i f g c

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a post-order traversal is made?

postorder(node) {
 postorder(node.left)
 postorder(node.right)
 print(node.key)
}

d j h e b i f g c a

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if an in-order traversal is made?

inorder(node) {
 inorder(node.left)
 print(node.key)
 inorder(node.right)
}

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if an in-order traversal is made?

d b j h e a f i c g

inorder(node) {
 inorder(node.left)
 print(node.key)
 inorder(node.right)
}

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a level-order traversal is made?

Binary tree traversals

a

b c

d e f g

h

j

i

● We want to traverse the tree and print the key of a node when visited
● In what order would the keys be printed if a level-order traversal is made?

a b c d e f g h i j

Iterators for linked lists null 5 23 4

nums

public class LLList ... {
 private class Node {
 private Object item;
 private Node next;
 }

 private class LLListIterator ... {
 private Node nextNode;

 public LLListIterator() {
 nextNode = head.next;
 }

 public boolean hasNext() {
 return nextNode != null;
 }

 public Object next() {
 Object item = nextNode.item;
 nextNode = nextNode.next;
 return item;
 }
 }
}

iter

int[] numsArray = {5, 23, 4};
LLList nums = new LLList(numsArray);

ListIterator iter = nums.iterator();
System.out.println("printing all items...");

while (iter.hasNext()) {
 Object item = iter.next();
 System.out.println(item);
}

for the linked list
iterator, we kept track
of the next node with
a reference

Iterators for linked lists

nums

public class LLList ... {
 private class Node {
 private Object item;
 private Node next;
 }

 private class LLListIterator ... {
 private Node nextNode;

 public LLListIterator() {
 nextNode = head.next;
 }

 public boolean hasNext() {
 return nextNode != null;
 }

 public Object next() {
 Object item = nextNode.item;
 nextNode = nextNode.next;
 return item;
 }
 }
}

iter

when the iterator is
constructed, the
nextNode reference
is set to the front of
the list

skip over dummy head node of linked list

int[] numsArray = {5, 23, 4};
LLList nums = new LLList(numsArray);

ListIterator iter = nums.iterator();
System.out.println("printing all items...");

while (iter.hasNext()) {
 Object item = iter.next();
 System.out.println(item);
}

null 5 23 4

nums

public class LLList ... {
 private class Node {
 private Object item;
 private Node next;
 }

 private class LLListIterator ... {
 private Node nextNode;

 public LLListIterator() {
 nextNode = head.next;
 }

 public boolean hasNext() {
 return nextNode != null;
 }

 public Object next() {
 Object item = nextNode.item;
 nextNode = nextNode.next;
 return item;
 }
 }
}

iter next() updates our
reference, but not before
saving the item for
returning

int[] numsArray = {5, 23, 4};
LLList nums = new LLList(numsArray);

ListIterator iter = nums.iterator();
System.out.println("printing all items...");

while (iter.hasNext()) {
 Object item = iter.next();
 System.out.println(item);
}

null 5 23 4

Iterators for binary trees
● Just like linked list iterators, binary tree iterators give consecutive access to

values in nodes
● Binary tree iterators should satisfy the following interface:

public interface LinkedTreeIterator {
 boolean hasNext();
 int next(); // assume tree stores integers
}

● Depending on the traversal, we will write a class that implements
LinkedTreeIterator and express the logic of the traversal in three places:
constructor, hasNext() and next()

● Like LLList, we implement the iterator as a private inner class

Iterators for binary trees

public class LinkedTree ... {
 private Node root;

 private class PreorderIterator ... {
 private Node nextNode;

 public PreorderIterator() {
 nextNode = ???
 }

 public boolean hasNext() {
 return nextNode != null;
 }

 public int next() {
 ???
 }
 }
}

15

12 18

6 14

21

25

10

9

● Start by copying nextNode and the hasNext() code from the linked list iterator
● When an iterator is constructed, what node should nextNode point to?

○ In other words, which node is visited first in a pre-order traversal?

?nextNode

root

LinkedTree

LinkedTreeIterator

Iterators for binary trees

public class LinkedTree ... {
 private Node root;

 private class PreorderIterator ... {
 private Node nextNode;

 public PreorderIterator() {
 nextNode = root;
 }

 public boolean hasNext() {
 return nextNode != null;
 }

 public int next() {
 ???
 }
 }
}

15

12 18

6 14

21

25

10

9

● Start by copying nextNode and the hasNext() code from the linked list iterator
● When an iterator is constructed, what node should nextNode point to? root of the tree

○ In other words, which node is visited first in a pre-order traversal? here, the 15 node

nextNode

root

LinkedTree

LinkedTreeIterator

Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
 private Node nextNode;

 public int next() {

 ???

 }
}

15

12 18

6 14

21

25

10

9

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable

for the key of the 15 node, then make nextNode point to the 12 node

nextNode

Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
 private Node nextNode;

 public int next() {
 int toReturn = nextNode.key;
 nextNode = nextNode.left;
 return toReturn;
 }
}

15

12 18

6 14

21

25

10

9

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable

for the key of the 15 node, then make nextNode point to the 12 node

nextNode

Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
 private Node nextNode;

 public int next() {
 int toReturn = nextNode.key;
 nextNode = nextNode.left;
 return toReturn;
 }
}

15

12 18

6 14

21

25

10

9

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable

for the key of the 15 node, then make nextNode point to the 12 node

nextNode

Iterators for binary trees: the first call to next()

private class PreorderIterator ... {
 private Node nextNode;

 public int next() {
 int toReturn = nextNode.key;
 nextNode = nextNode.left;
 return toReturn;
 }
}

15

12 18

6 14

21

25

10

9

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable

for the key of the 15 node, then make nextNode point to the 12 node

● This works for the first call to next(), but it is clear we
need more cases—what should next() do when
nextNode points to the 6 node?

nextNode

Iterators for binary trees: the first call to next()

15

12 18

6 14

21

25

10

9

● This works for the first call to next(), but it is clear we
need more cases—what should next() do when
nextNode points to the 6 node?
Since the 6 node has no left child, it should set
nextNode to nextNode.right

private class PreorderIterator ... {
 private Node nextNode;

 public int next() {
 int toReturn = nextNode.key;
 nextNode = nextNode.left;
 return toReturn;
 }
}

● For the tree on the right, the first two keys in the pre-order traversal are 15, then 12
● After an iterator is constructed, the first call to next() would need to create a variable

for the key of the 15 node, then make nextNode point to the 12 node

nextNode

Iterators for binary trees: improving next()
public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 ???
 }

 return toReturn;
}

15

12 18

6

21

25

1010

9

14

Iterators for binary trees: improving next()
public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 ???
 }

 return toReturn;
}

15

12 18

6 14

21

25

10

9
nextNode

What happens when we update nextNode to point to the
9 node? Where should nextNode point to next?

Iterators for binary trees: improving next()
public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 ???
 }

 return toReturn;
}

15

12 18

6 14

21

25

10

9
nextNode

What happens when we update nextNode to point to the
9 node? Where should nextNode point to next?

We will need a way to get from the 9 node up to
the 14 node, the next key in the pre-order traversal!

need to get
here

Pre-order traversal
15 12 6 10 9 14 18 25 21

Iterators for binary trees: parent references
● To enable our binary tree iterator to reach all nodes starting from any node, we

can add a parent reference to the inner Node class
● The methods of the LinkedTree class must be changed to properly update

the parent reference (e.g., when inserting a node)

15

12 18

6 14

21

25

10

9

private class Node {
 private int key;
 private LLList data;
 private Node left;
 private Node right;
 private Node parent;
 ...
}

Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to

reach a node above us in the tree with a right child we have not visited yet
● We may need to traverse more than one parent reference to get to the node

whose key is the next one in the pre-order traversal

15

12 18

6 14

21

25

10

9
nextNode

need to get
here

Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to

reach a node above us in the tree with a right child we have not visited yet
● We may need to traverse more than one parent reference to get to the node

whose key is the next one in the pre-order traversal
● Here’s one attempt:

15

12 18

6 14

21

25

10

9
nextNode

need to get
here

Node p = nextNode.parent;

while (p != null && p.right == null) {
 p = p.parent;
}

if (p == null) {
 nextNode = null;
} else {
 nextNode = p.right;
}

Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to

reach a node above us in the tree with a right child we have not visited yet
● We may need to traverse more than one parent reference to get to the node

whose key is the next one in the pre-order traversal
● Here’s one attempt:

15

12 18

6 14

21

25

10

9
nextNode

need to get
here

Node p = nextNode.parent;

while (p != null && p.right == null) {
 p = p.parent;
}

if (p == null) {
 nextNode = null;
} else {
 nextNode = p.right;
}

p

Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to

reach a node above us in the tree with a right child we have not visited yet
● We may need to traverse more than one parent reference to get to the node

whose key is the next one in the pre-order traversal
● Here’s one attempt:

15

12 18

6 14

21

25

10

9
nextNode

need to get
here

Node p = nextNode.parent;

while (p != null && p.right == null) {
 p = p.parent;
}

if (p == null) {
 nextNode = null;
} else {
 nextNode = p.right;
}

going up the tree via parent
references, find the first
parent with a right child

p

Iterators for binary trees: putting it together
● When nextNode is a leaf node, we need to use the parent references to

reach a node above us in the tree with a right child we have not visited yet
● We may need to traverse more than one parent reference to get to the node

whose key is the next one in the pre-order traversal
● Here’s one attempt:

15

12 18

6 14

21

25

10

9

need to get
here

Node p = nextNode.parent;

while (p != null && p.right == null) {
 p = p.parent;
}

if (p == null) {
 nextNode = null;
} else {
 nextNode = p.right;
}

going up the tree via parent
references, find the first
parent with a right child

p

this will not work! it finds the 10 node
instead of the 14 node

we need to find unvisited right children
nextNode

15

12 18

6 14

21

25

10

9
nextNode

need to get
here

public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 Node p = nextNode.parent;
 Node c = nextNode;

 while (p != null && p.right == null || p.right == c) {
 c = p;
 p = p.parent;
 }

 if (p == null) {
 nextNode = null;
 } else {
 nextNode = p.right;
 }
 }

 return toReturn;
}

● Use two references: one to the
parent, and one “behind”

● Allows us to find right children
we have not already visited

● Stop the loop on the first
ancestor whose right child is
not on our path to the root

15

12 18

6 14

21

25

10

9
nextNode

need to get
here

public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 Node p = nextNode.parent;
 Node c = nextNode;

 while (p != null && p.right == null || p.right == c) {
 c = p;
 p = p.parent;
 }

 if (p == null) {
 nextNode = null;
 } else {
 nextNode = p.right;
 }
 }

 return toReturn;
}

● Use two references: one to the
parent, and one “behind”

● Allows us to find right children
we have not already visited

● Stop the loop on the first
ancestor whose right child is
not on our path to the root

15

12 18

6 14

21

25

10

9
nextNode

public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 Node p = nextNode.parent;
 Node c = nextNode;

 while (p != null && p.right == null || p.right == c) {
 c = p;
 p = p.parent;
 }

 if (p == null) {
 nextNode = null;
 } else {
 nextNode = p.right;
 }
 }

 return toReturn;
}

● Use two references: one to the
parent, and one “behind”

● Allows us to find right children
we have not already visited

● Stop the loop on the first
ancestor whose right child is
not on our path to the root

c

p

15

12 18

6 14

21

25

10

9
nextNode

public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 Node p = nextNode.parent;
 Node c = nextNode;

 while (p != null && p.right == null || p.right == c) {
 c = p;
 p = p.parent;
 }

 if (p == null) {
 nextNode = null;
 } else {
 nextNode = p.right;
 }
 }

 return toReturn;
}

● Use two references: one to the
parent, and one “behind”

● Allows us to find right children
we have not already visited

● Stop the loop on the first
ancestor whose right child is
not on our path to the root

c

p

15

12 18

6 14

21

25

10

9
nextNode

public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 Node p = nextNode.parent;
 Node c = nextNode;

 while (p != null && p.right == null || p.right == c) {
 c = p;
 p = p.parent;
 }

 if (p == null) {
 nextNode = null;
 } else {
 nextNode = p.right;
 }
 }

 return toReturn;
}

● Use two references: one to the
parent, and one “behind”

● Allows us to find right children
we have not already visited

● Stop the loop on the first
ancestor whose right child is
not on our path to the root

c

p

15

12 18

6 14

21

25

10

9
nextNode

public int next() {
 int toReturn = nextNode.key;

 if (nextNode.left != null) {
 nextNode = nextNode.left;
 } else if (nextNode.right != null) {
 nextNode = nextNode.right;
 } else {
 Node p = nextNode.parent;
 Node c = nextNode;

 while (p != null && p.right == null || p.right == c) {
 c = p;
 p = p.parent;
 }

 if (p == null) {
 nextNode = null;
 } else {
 nextNode = p.right;
 }
 }

 return toReturn;
}

● Use two references: one to the
parent, and one “behind”

● Allows us to find right children
we have not already visited

● Stop the loop on the first
ancestor whose right child is
not on our path to the root

c

p

Huffman encoding
● We are given a document where all characters are

drawn from a set of 6 characters, with the
frequencies shown here

● Let’s create a Huffman tree from this table of
frequencies and then use it to decode a binary
string

● To create a Huffman tree, create nodes for each
character, then, keeping the nodes in sorted order,
repeatedly combining the two lowest-frequency
nodes into a subtree

character frequency

e 45

a 33

r 20

i 18

n 15

d 10

Huffman encoding
character frequency

e 45

a 33

r 20

i 18

n 15

d 10

d
10

n
15

i
18

r
20

a
33

e
45

Huffman encoding
character frequency

e 45

a 33

r 20

i 18

n 15

d 10

d
10

n
15

i
18

r
20

a
33

e
4525

Huffman encoding
character frequency

e 45

a 33

r 20

i 18

n 15

d 10

d
10

n
15

a
33

e
4525

i
18

r
20

38

Huffman encoding
character frequency

e 45

a 33

r 20

i 18

n 15

d 10

e
45

i
18

r
20

38

d
10

n
15

a
3325

58

Huffman encoding
character frequency

e 45

a 33

r 20

i 18

n 15

d 10

d
10

n
15

a
33

e
4525

i
18

r
20

38

58 83

Huffman encoding
character frequency

e 45

a 33

r 20

i 18

n 15

d 10

d
10

n
15

a
33

e
4525

i
18

r
20

38

58 83

141

Huffman encoding

d
10

n
15

a
33

e
4525

i
18

r
20

38

58 83

141

● Let’s use the tree to decode the
following binary string:

00101000100101

0

0

0

0

0

1

1

1

1

1

Huffman encoding
● Let’s use the tree to decode the

following binary string:

00101000100101

n a d i r

d
10

n
15

a
33

e
4525

i
18

r
20

38

58 83

141
0

0

0

0

0

1

1

1

1

1

