
Section 9
CSCI E-22

Will Begin Shortly

Binary Search Trees

● Recall that a binary search tree is a special binary tree in which
the keys are kept in order. In particular, we call a tree a binary
search tree if it satisfies the binary search tree property.

● A tree satisfies the binary search tree property if, for a root
node with key k, all nodes in the left subtree have keys less
than k, and all nodes in the right subtree have keys greater
than or equal to k.

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

15

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

15

23 < 15? or 23 > 15?

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

 because 23 > 15

23

15

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20 < 15? or 20 > 15?

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20 < 15? or 20 > 15?

So, we need to look in the right subtree.
Since 23 is already in the right subtree, we need to ask:

20 < 23? or 20 > 23?

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

because 20 < 23
20

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

because 10 < 15

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

because 13 < 15
and 13 > 10

13

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

136

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

136

18

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

136

18

35

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

136

18

35

As 23 is a duplicate, it is a unique case. It will still start at the root, and see that 23 > 15,
and proceed to check the right subtree. However, it will see the root of the right subtree
is 23, a match. It will therefore halt its insert as the number already exists in the tree.

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

13

18

356

9

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

13

18

356

9 24

Insert the following sequence of keys into an empty binary search tree:
15, 23, 20, 10, 13, 6, 18, 35, 23 (a duplicate), 9, 24

23

15

20

10

13

18

356

9 24

Is this a balanced tree?

23

15

20

10

13

18

356

9 24

Is this a balanced tree?

23

15

20

10

13

18

356

9 24

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24
left: -1
right: -1

subtree heights

diff: 0

height of empty tree = -1
height of one-node tree = 0

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24
left: -1
right: 0

subtree heights

diff: 1

height of empty tree = -1
height of one-node tree = 0

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24
left: -1
right: -1

subtree heights

diff: 0

height of empty tree = -1
height of one-node tree = 0

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24
left: 1
right: 0

subtree heights

diff: 1

height of empty tree = -1
height of one-node tree = 0

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24

height of empty tree = -1
height of one-node tree = 0

left: -1
right: -1

subtree heights

diff: 0

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24

height of empty tree = -1
height of one-node tree = 0

left: 0
right: -1

subtree heights

diff: 1

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24

height of empty tree = -1
height of one-node tree = 0

left: -1
right: -1

subtree heights

diff: 0

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24

height of empty tree = -1
height of one-node tree = 0

left: 0
right: -1

subtree heights

diff: 1

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24

height of empty tree = -1
height of one-node tree = 0

left: 1
right: 1

subtree heights

diff: 0

Is this a balanced tree?

15

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

23

20

10

13

18

356

9 24

height of empty tree = -1
height of one-node tree = 0

left: 2
right: 2

subtree heights

diff: 0

Is this a balanced tree? Yes. For each node, the heights of the subtrees
differ by at most one.

23

15

20

10

13

18

356

9 24

A tree is balanced if, for each node, the node’s subtrees
have the same height, or have heights that differ by 1.

height of a tree = maximum depth of its nodes
depth = # of edges on path from it to root

What will the tree look like after deleting the following items?:
6, 15, 20

23

15

20

10

13

18

356

9 24

What will the tree look like after deleting the following items?:
6, 15, 20

23

15

20

10

13

18

356

9 24

What will the tree look like after deleting the following items?:
6, 15, 20

23

15

20

10

13

18

359

24
Since 6 is being deleted,
and 9 is its only child, 9

takes its place as the left
child of the node

containing 10

What will the tree look like after deleting the following items?:
6, 15, 20

23

15

20

10

13

18

359

24

What will the tree look like after deleting the following items?:
6, 15, 20

23

20

10

13 359

24

18

Since 15 has a left and
right child, we replace it
with the smallest item
in its right subtree, 18,

and then delete the
node containing 18

What will the tree look like after deleting the following items?:
6, 15, 20

23

20

10

13 359

24

18

What will the tree look like after deleting the following items?:
6, 15, 20

2310

13 359

24

18

Since 20 had no
children, it can just be

removed

What will the tree look like after deleting the following items?:
6, 15, 20

2310

13 359

24

18

2310

13 359

24

18

Is this a balanced tree?

2310

13 359

24

18

Is this a balanced tree? No. The 23 has an empty left subtree (which can be
thought of as having a height of -1) but its right subtree has a height of 1 - so the
heights of its subtrees differ by more than 1.

left: -1
right: 1

subtree heights

diff: 2

-1

1

null

Binary Tree Methods
We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

Binary Tree Methods
We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

We can approach this problem somewhat like recursion over a linked list. The
main difference will be that instead of only recursively processing node.next,
we’ll need to process both node.left and node.right.

Binary Tree Methods
We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

Assume we have a node root which is the root node of a tree. How can we
recursively define the number of leaf nodes in that tree?

Binary Tree Methods
We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

Assume we have a node root which is the root node of a tree. How can we
recursively define the number of leaf nodes in that tree?

The number of leaves in a tree for which root is the root node is the sum of the
number of leaves in root’s left subtree and the number of leaves in root’s right
subtree. In other words, we can say that

numberOfLeaves(root) = numberOfLeaves(root.left) + numberOfLeaves(root.right)

Binary Tree Methods
We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

What will be our base case(s)?

Binary Tree Methods
We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

What will be our base case(s)?

We need to terminate the recursion if we are either at a leaf or if we are given an
empty tree.

Binary Tree Methods
We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

What will our function return?

An integer value.

Binary Tree Methods
We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

Review:

● Return an integer value

● We need to terminate the recursion if we are either given an empty tree or at
a leaf.

● numberOfLeaves(root) = numberOfLeaves(root.left) +
numberOfLeaves(root.right)

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

● Return an integer value

● We need to terminate the recursion if we are either given an empty tree or at
a leaf.

● numberOfLeaves(root) = numberOfLeaves(root.left) +
numberOfLeaves(root.right)

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

public int numLeaves(Node root) {

● We need to terminate the recursion if we are either given an empty tree or at
a leaf.

● numberOfLeaves(root) = numberOfLeaves(root.left) +
numberOfLeaves(root.right)

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

public int numLeaves(Node root) {

● We need to terminate the recursion if we are either given an empty tree or at
a leaf.

● numberOfLeaves(root) = numberOfLeaves(root.left) +
numberOfLeaves(root.right)

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

public int numLeaves(Node root) {
if (root == null) {
 // we're given an empty tree (no nodes)
 return 0;
}

● We need to terminate the recursion if we are either given an empty tree or at
a leaf.

● numberOfLeaves(root) = numberOfLeaves(root.left) +
numberOfLeaves(root.right)

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

public int numLeaves(Node root) {
if (root == null) {
 // we're given an empty tree (no nodes)
 return 0;
}

● We need to terminate the recursion if we are either given an empty tree or at
a leaf.

● numberOfLeaves(root) = numberOfLeaves(root.left) +
numberOfLeaves(root.right)

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

public int numLeaves(Node root) {
if (root == null) {
 // we're given an empty tree (no nodes)
 return 0;
}else if (root.left == null && root.right == null) {
 // we're given a leaf node
 return 1;
}

● numberOfLeaves(root) = numberOfLeaves(root.left) +
numberOfLeaves(root.right)

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

public int numLeaves(Node root) {
if (root == null) {
 // we're given an empty tree (no nodes)
 return 0;
}else if (root.left == null && root.right == null) {
 // we're given a leaf node
 return 1;
}

● numberOfLeaves(root) = numberOfLeaves(root.left) +
numberOfLeaves(root.right)

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

public int numLeaves(Node root) {
if (root == null) {
 // we're given an empty tree (no nodes)
 return 0;
}else if (root.left == null && root.right == null) {
 // we're given a leaf node
 return 1;
}else {

 return numLeaves(root.left)+ numLeaves(root.right);
}

We want to write a method which counts the number of leaf nodes in a given tree.
Leaf nodes are defined as nodes which have no children.

public int numLeaves(Node root) {
if (root == null) {
 // we're given an empty tree (no nodes)
 return 0;
}else if (root.left == null && root.right == null) {
 // we're given a leaf node
 return 1;
}else {

 return numLeaves(root.left)+ numLeaves(root.right);
}

public int numLeaves(Node root) {
if (root == null) {
 // we're given an empty tree (no nodes)
 return 0;
}else if (root.left == null && root.right == null) {
 // we're given a leaf node
 return 1;
}else {

 return leafCount(root.left)+ leafCount(root.right);
}

What would we need to do if we wanted to write this method iteratively? What sort of
data structures would we need?

public int numLeaves(Node root) {
if (root == null) {
 // we're given an empty tree (no nodes)
 return 0;
}else if (root.left == null && root.right == null) {
 // we're given a leaf node
 return 1;
}else {

 return leafCount(root.left)+ leafCount(root.right);
}

What would we need to do if we wanted to write this method iteratively? What sort of
data structures would we need? We would need to maintain a stack onto which we
could push the left and right subtree’s root nodes as we iterated.

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

2-3 Trees

Remember:

● A 2-3 tree is a balanced tree in which:
○ all nodes have equal-height subtrees (perfect balance)
○ each node is either

■ a 2-node, which contains one data item and 0 or 2 children
■ a 3-node, which contains two data items and 0 or 3 children

○ the keys form a search tree

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

15

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

15 23

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

15 23

Inserting 20 requires a split,
which creates a new root
containing the middle item

20

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

20

15 23

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

20

10 15 23

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

20

10 15 23

Inserting 13 requires a split,
sending the middle item up a
level to join the root

13

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

13 20

10 2315

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

13 20

6 10 2315

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

13 20

6 10 2315 18

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

13 20

6 10 23 3515 18

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

13 20

6 10 23 3515 18

Inserting 27 requires two splits. First,
it splits the node containing 23 and
35, sending the middle item, 27, up a
level. However, once up a level, it
once again splits a node (this time,
that containing 13 and 20), and
sends the new middle item, 20, up
another level

27

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

6 10

20

15 18

13 27

23 35

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

6 10

20

15 18

13 27

23 35

Inserting 9 requires one split, sending
the middle element, 9, up a level
where it joins 13 as the root of the left
subtree

9

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

6

20

15 18

9 13 27

23 3510

Insert the following sequence of keys into an empty 2-3 tree:
15, 23, 20, 10, 13, 6, 18, 35, 27, 9

6

20

15 18

9 13 27

23 3510

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

B-Trees

*Remember, with B-trees:

● A B-tree of order m is a tree in which each node has:
○ At most 2m entries (and, for internal nodes, 2m+1 children)
○ At least m entries (and, for internal nodes, m+1 children)
○ Exception: the root node may have as few as 1 entry
○ A 2-3 tree is essentially a B-tree of order 1

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

B-Trees

Remember:

● A B-tree of order m is a tree in which each node has:
○ At most 4 entries (and, for internal nodes, 5 children)
○ At least 2 entries (and, for internal nodes, 3 children)
○ Exception: the root node may have as few as 1 entry
○ A 2-3 tree is essentially a B-tree of order 1

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

51

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

3 51

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

3 10 51

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

3 10 51 77

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

3 10 51 77

Inserting 20 requires a split

20

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

51 77

20

3 10

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

40 51 77

20

3 10

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

34 40 51 77

20

3 10

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

34 40 51 77

20

3 10

Inserting 28 requires a split, sending
the middle item up a level

28

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

51 77

20 40

3 10 28 34

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

51 61 77

20 40

3 10 28 34

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

51 61 77 80

20 40

3 10 28 34

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

51 61 77 80

20 40

3 10 28 34

Inserting 68 requires another split,
sending the middle item up a level

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

77 80

20 40 68

3 10 28 34 51 61

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

77 80 93

20 40 68

3 10 28 34 51 61

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

77 80 90 93

20 40 68

3 10 28 34 51 61

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

77 80 90 93

20 40 68

3 10 28 34 51 61

Inserting 97 requires another split,
sending the middle item up a level

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

77 80

20 40 68 90

3 10 28 34 51 61 93 97

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

77 80

20 40 68 90

3 10 14 28 34 51 61 93 97

We want to construct a B-tree where m = 2 for the following keys, in the specified
order, from left to right:
51, 3, 10, 77, 20, 40, 34, 28, 61, 80, 68, 93, 90, 97, 14

77 80

20 40 68 90

3 10 14 28 34 51 61 93 97

